• 제목/요약/키워드: Energy Conservation Technology

검색결과 310건 처리시간 0.031초

과냉 회로를 갖는 이산화탄소 냉동시스템에 대한 성능 해석 (Performance Analysis for CO2 System with Sub-cooling loop)

  • 김진만;고성규;김무근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.723-728
    • /
    • 2007
  • In order to evaluate the performance of carbon dioxide cycle with a sub-cooling loop. a simulation system was developed to predict the steady state of $CO_2$ trans-critical cycle. Mathematical models are derived to describe the relationships between the system's coefficient of performance and other operating parameters The mathematical models are based entirely on the basic mass and energy conservation law and thermodynamic and transport properties of carbon dioxide A parametric study has been conducted in order to investigate the effect of sub-cooling loop and various operating conditions on the cycle performance. An optimal mass fraction of a refrigerant flowing through sub-cooling cycle existed for the given evaporating temperature, high pressure and air inlet temperature through gas cooler.

전기장 변화에 따른 3차원 비정상 상태 열전달 연계 해석에 관한 연구 (A Study on the 3-D Unsteady State Heat Transfer Coupled by Conductive Currents)

  • 곽이구;김홍건
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.29-34
    • /
    • 2008
  • A modeling technique for the 2-way coupling of heat transfer and conduction currents has been performed to inspire a combined analytical simulation. The 3-D finite element method is used to solve steady conduction currents and heat generation in an aluminum film deposited on a silicon substrate. The model investigates the temperature in the device after the current is applied. The conservation equation of energy, the Maxwell equations for conduction currents, the unsteady state heat transfer equation and the Fourier's law for heat transfer are implemented as a bidirectionally coupled problem. It is found that the strongly coupled temperature and time dependent heat equations give a reasonable results and an explicit solving technique.

AUV hull lines optimization with uncertainty parameters based on six sigma reliability design

  • Hou, Yuan hang;Liang, Xiao;Mu, Xu yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.499-507
    • /
    • 2018
  • Autonomous Underwater Vehicle (AUV), which are becoming more and more important in ocean exploitation tasks, needs energy conservation urgently when sailing the complex mission path in long time cruise. As hull lines optimization design becomes the key factor, which closely related with resistance, in AUV preliminary design stage, uncertainty parameters need to be considered seriously. In this research, Myring axial symmetry revolution body with parameterized expression is assumed as AUV hull lines, and its travelling resistance is obtained via modified DATCOM formula. The problems of AUV hull lines design for the minimum travelling resistance with uncertain parameters are studied. Based on reliability-based optimization design technology, Design For Six Sigma (DFSS) for high quality level is conducted, and is proved more reliability for the actual environment disturbance.

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

분사압력변화가 충돌분무특성에 미치는 영향에 관한 수치적 고찰 (Numerical Analysis of the Effect of Injection Pressure Variation on Impaction Spray Characteristics)

  • 김승철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.47-53
    • /
    • 1999
  • Small compression-ignition direct injection engines have been developed as a measure to improve a fuel efficiency and reduce harmful exhaust gases. Those small engines generally employ high injection pressure increase on the spray impacting on a wall is discussed in this paper. The gas phase is modelled by the Eulerian continuum conservation equations of mass momentum energy and fuel vapour fraction. The liquid phases is modelled following the discrete droplet model approach in Lagrangian form and the droplet wall interaction is modelled as a func-tion of the velocity normal to impaction lands. The droplet distributions vapor fractions and gas flows are analyzed in various injection pres-sure cases. The penetrations of wall spray and vapor increase and the Sauter mean diameter decreases with increasing injection pressure.

  • PDF

VORTEX SHEAR VELOCITY AND ITS EROSION IN THE SCOUR HOLE

  • Lee, Hong-Sik;Kim, Jin-Hong;Lee, Sam-Hee
    • Water Engineering Research
    • /
    • 제1권4호
    • /
    • pp.259-266
    • /
    • 2000
  • Scour hole is formed due to the high shear stress of the jet flow at the outlet of a hydraulic structure and vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion for the design of bed protection. If the vortex erosion continues and reaches to the hydraulic structure, it causes the deformation of the structure itself. To obtain the amount of the vortex erosion, it is necessary to determine the shear velocity of the line vortex in the scour hole was derived by the theory of energy conservation and found to be related to the upstream overflow velocity. The amount of vortex erosion from the scour hole was obtained using entrainment equation for given value of shear velocity. For a design purpose, if the flow velocity at the end of an apron and the properties of bed material are given, the amount of vortex erosion was obtained.

  • PDF

A study of the optimum draft of multiple resonance power buoys for maximizing electric power production

  • Kweon, Hyuck-Min;Cho, Hong-Yeon;Cho, II-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.813-825
    • /
    • 2014
  • To maximize electric power production using wave energy extractions from resonance power buoys, the maximum motion displacement spectra of the buoys can primarily be obtained under a given wave condition. In this study, wave spectra observed in shoaling water were formulated. Target resonance frequencies were established from the arithmetic means of modal frequency bands and the peak frequencies. The motion characteristics of the circular cylindrical power buoys with corresponding drafts were then calculated using numerical models without considering PTO damping force. Results showed that the heave motions of the power buoys in shoaling waters with insufficient drafts produced greater amplification effects than those in deep seas with sufficient drafts.

확장 충돌 모델이 분무계산에 미치는 영향 (The Effect of Extended Collision Model on a Spray)

  • 한진희;조상무;박권하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.181-191
    • /
    • 2002
  • Spray calculation has been studied to understand the behavior of the spray in a combustion chamber But the spray dispersion has not been predicted properly in a high velocity injection spray or a wall impaction spray. In this study the extended grazing collision model is applied to improve the problem. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form. The droplet distributions, penetration, width and gas flows are compared for the cases with or without extended model. The extended collision model makes the results better.

로터리 제습기의 일반 해석 모델 (Development of a General Analytical Model for Desiccant Wheels)

  • 김동선;이대영
    • 설비공학논문집
    • /
    • 제25권2호
    • /
    • pp.109-118
    • /
    • 2013
  • The absence of a simple and general analytical model has been a problem in the design and analysis of desiccant-assisted air-conditioning systems. In this study, such an analytical model has been developed based on the approximate integral solution of the coupled transient ordinary differential equations for the heat and mass transfer processes in a desiccant wheel. It turned out that the initial conditions should be determined by the solution of four linear algebraic equations including the heat and mass transfer equations for the air flow as well as the energy and mass conservation equations for the desiccant bed. It is also shown that time-averaged exit air temperature and humidity relations could be given in terms of the heat and mass transfer effectiveness.

크리깅모델을 이용한 자동차 도어의 구조설계 (Structural Design of an Automotive Door Using the Kriging Models)

  • 이권희;방일권
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.146-153
    • /
    • 2007
  • Weight reduction for automobile components has been sought to achieve fuel efficiency and energy conservation. There are two approaches in reducing their weights. One is by using material lighter than steel, and the other is by redesigning their structures. The latter has been performed by adopting hydroforming, tailor weled blank, optimization, etc. In this research, the kriging approximation method and simulated annealing algorithm are applied to the design of a front door made by TWB (Tailor Welded Blank) technology. The design variables are set up as the thicknesses of parts and the positions of parting lines. A thickness set considered as a design variable of each part is not arbitrarily determined but selected from standard products, so it is a discrete set. This research presents the discrete and continuous structural optimization method for an automotive door design.