• Title/Summary/Keyword: Energy & Organic Agriculture

Search Result 165, Processing Time 0.024 seconds

The Effect of Dietary Selenium Source and Vitamin E Levels on Performance of Male Broilers

  • Choct, M.;Naylor, A.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.1000-1006
    • /
    • 2004
  • Selenium and vitamin E are micronutrients essential for normal health and maintenance in poultry. They are necessary in preventing free radical damage to phospholipid membranes, enzymes and other important molecules. Two experiments were conducted in a semi-commercial environment to examine the effect of Se source and vitamin E level in diet on broiler performance and meat quality. Increasing vitamin E from 50 IU to 100 IU did not affect growth performance of broilers although the 24 h drip-loss was tended to be reduced (p=0.06). There was an interaction between vitamin E and the source of Se in glutathione peroxidase activity (GSH-Px) and Se concentration in excreta. Increasing vitamin E from 50 IU to 100 IU elevated GSH-Px and Se concentration in excreta by 42 IU/g Hb and 0.9 ppm for the organic Se group, respectively, but reduced GSH-Px and Se concentration in excreta by 16 IU/g Hb and 1.3 ppm for inorganic group, respectively. Vitamin E played no role in the feather coverage of the birds when scored on day 37. Organic Se is more effective in improving feather score and 24 h drip-loss, with a markedly higher deposition rate in breast muscle and a lower excretion rate in the excreta (p<0.05) compared to the inorganic Se source. Both vitamin E and the source of Se did not affect (p>0.05) the energy utilisation by birds.

An Analysis of Local Quantity of Carbon Absorption, Fixation and Emission by Using GIS

  • Kim, Hyeon-Tae;Moon, Byeong-Eun;Choi, Eun-Gyu;Kim, Chi-Ho;Ryou, Young-Sun;Kim, Jong-Goo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.40-48
    • /
    • 2014
  • Due to increasing greenhouse gas emissions, global warming and abnormal weather phenomena it has become important on a national level to keep a count of greenhouse gases being emitted. We want to take advantage of any selected area, as the basic data for the calculation of greenhouse gas emissions, Forest and Grassland, Paddy fields, and Fields(crops), Greenhouse(crops), Pig farm, Cattle farm, Farm household(populations, agricultural machinery) and Vehicle, the basic building blocks shots with a small amount of per-unit basis, the statistics calculated based on regional carbon emissions through the literature and experimental. Carbon absorption 772,960 ton C/year, amount of fixation 487,477 ton C/year, amount of emission 1,112,607 ton C/year were noted in Gimje-si, and amount of carbon absorption 55,559 ton C/year, amount of fixation 25,864 ton C/year, amount of emissions 58,355 ton C/year in Gongdeok-myeon, respectively. The carbon absorption at Hwangsan-ri is 25,107 ton C/year, fixation 4,301 ton C/year, and emission 20,330 ton C/year respectively. We were able to estimate the amount of carbon according to the specific characteristics of each unit village, then expanding it to a large-scale and comparative analysis, therefore we were able to obtain basic data on the national levels of carbon absorption.

Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

  • Cu, T.T.T.;Nguyen, T.X.;Triolo, J.M.;Pedersen, L.;Le, V.D.;Le, P.D.;Sommer, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.280-289
    • /
    • 2015
  • Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane ($CH_4$) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest $CH_4$ yield of 443 normal litter (NL) $CH_4kg^{-1}$ volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL $CH_4kg^{-1}$ VS, respectively. The BMP experiment also demonstrated that the $CH_4$ production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95.This model was applied to calculate the $CH_4$ yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

Studies on the Uptake of $Sr^{90}$ with the Growth of Rice Plant (수도(水稻) 생육(生育)에 따른 $Sr^{90}$ 흡수(吸收)에 관한 연구(硏究))

  • Kim, Jae-Sung;Lim, Soo-Kil;Lee, Young-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.2
    • /
    • pp.92-95
    • /
    • 1988
  • A Pot experiment was conducted to study the uptake of $Sr^{90}$ by rice plants in five different types of paddy soils and its distribution in these plants as a function of the age of the rice. The uptake of $Sr^{90}$ by rice plants increased with the growth of the aboveground mass of the plants from the planting period, but $Sr^{90}$ content per unit of dry matter decreased as the organic mass of the plants increased during the vegetative growing period, except for the time of ripening. The content of Ca and $Sr^{90}$ in rice plants was higher in the stem and leaves than in grain parts in general. However, Ca content was decreased in the stem and increased in the grain part with the growth of the rice plant ; but $Sr^{90}$ content was increased in the leaves and decreased in the stem and grain parts.

  • PDF

Effects of Supplementation of Mulberry (Morus alba) Foliage and Urea-rice Bran as Fermentable Energy and Protein Sources in Sheep Fed Urea-treated Rice Straw Based Diet

  • Yulistiani, Dwi;Jelan, Z.A.;Liang, J.B.;Yaakub, H.;Abdullah, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.494-501
    • /
    • 2015
  • A digestibility study was conducted to evaluate the effects of supplementing mulberry foliage and urea rice-bran as a source of fermentable energy and protein to 12 sheep fed diets based on urea-treated rice straw (TRS). The three dietary treatments were: T1, TRS with mulberry; T2, TRS with 50% mulberry replaced with rice bran and urea; and T3, TRS with rice bran and urea. The study was arranged in a completely randomized design with four replications for each treatment. The sheep were fed one of the three diets and the supplements were offered at 1.2% of the body weight (BW) and the TRS was provided ad libitum. There were no differences (p>0.05) among the three treatment groups with respect to dry matter (DM) intake ($76.8{\pm}4.2g/kg\;BW^{0.75}$) and DM, organic matter (OM), and crude protein (CP) digestibility ($55.3{\pm}1.22$; $69.9{\pm}0.85$; $46.3{\pm}1.65%$ respectively for DM, OM, and CP). The digestibility of fiber (neutral detergent fiber [NDF] and acid detergent fiber) was significantly lower (p<0.05) for T3 (46.2 and 46.6 respectively) compared to T1 (55.8 and 53.7 respectively) and T2 (54.1 and 52.8 respectively). Nitrogen (N) intake by sheep on diet T3 was significantly (p<0.05) higher than sheep fed diet T1. However, N balance did not differ among the three diets ($3.0{\pm}0.32g/d$). In contrast, the rumen ammonia ($NH_3-N$) concentrations in sheep fed T2 and T3 were significantly (p<0.05) higher than in sheep fed T1. The $NH_3-N$ concentrations for all three diets were above the critical value required for optimum rumen microbial growth and synthesis. Total volatile fatty acid concentrations were highest (p<0.05) in T1 (120.3 mM), whilst the molar proportion of propionic acid was highest in T3 (36.9%). However, the microbial N supply in sheep fed T1 and T3 was similar but was significantly (p<0.05) higher than for sheep fed T2. It was concluded that mulberry foliage is a potential supplement of fermentable energy and protein for sheep fed TRS based diet. The suggested level of supplementation is 1.2% of BW or 32% of the total diet since it resulted in similar effects on the intake of DM, OM, and NDF, digestibility of DM, OM, and CP, N utilization and microbial supply when compared to rice bran and urea supplementation.

Effects of Ensiling Alfalfa with Whole-crop Maize on the Chemical Composition and Nutritive Value of Silage Mixtures

  • Ozturk, Durmus;Kizilsimsek, Mustafa;Kamalak, Adem;Canbolat, Onder;Ozkan, Cagri Ozgur
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.526-532
    • /
    • 2006
  • The aim of this study was to evaluate the chemical composition, in vitro DM degradability, ME and OMD of alfalfa-maize silage mixtures in comparison to pure maize and alfalfa silages, and to test the existence of associative effects of ensiling alfalfa forage with whole-crop maize using the in vitro gas production technique. Ensiling alfalfa with whole-crop maize had a significant (p<0.001) effect on chemical composition, pH, in vitro DM degradability, OMD and estimated ME values of mixtures. DM content of the resultant silages significantly increased with increasing proportion of whole-crop maize in the mixtures, whereas the pH value, crude protein (CP), acid detergent fibre (ADF) and ash contents of mixtures decreased due to the dilution effect of whole-crop maize which was low in CP, ADF and ash. The pH values of all alfalfa-maize silage mixtures were at the desired level for quality silage. Gas production of alfalfa-maize silage mixtures at all incubation times except 12 h increased with increasing proportion of whole-crop maize. When alfalfa was mixed with whole-crop maize in the ratio 40:60, ME and OMD values were significantly (p<0.001) higher than other silages. Maximum gas production ($A_{gas}$) ranged from 65.7 to 78.1 with alfalfa silage showing the lowest maximum gas production. The results obtained in this study clearly showed that maximum gas production increased with increased percentage of whole-crop maize in the silage mixtures (r = 0.940, p<0.001). It was concluded that ensiling alfalfa with whole-crop maize improved the pH, OMD and ME values. However, trials with animals are required to see how these differences in silage mixtures affect animal performance.

THE EFFECTS OF OPERATIONAL AND FINANCIAL FACTORS ON THE ECONOMICS OF BIOGAS PRODUCTION FROM DAIRY COW FECES AND WASTEWATER

  • Kobayashi, S.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.139-145
    • /
    • 1993
  • Biogas created from animal waste is a precious energy source. A practical and successful utilization of the biogas is not easy, because there lie some difficulties in biogas production and facilities investment. In this study, the requisites for a successful biogas utilization were discussed. The production results obtained in the previous operation of anaerobic digestion plant were used for the simulation. When the slurry heating was designed for constant biogas generation, depreciation costs of the facilities amounted 1,175,000 yen per year, and biogas productions at $24.5^{\circ}C$, $30.0^{\circ}C$ and $35.5^{\circ}C$ were $16.8m^3$, $17.6m^3$ and $25.1m^3$, respectively. Removal ratios of organic matters were not so high. At $35.5^{\circ}C$, energy value of the biogas produced was estimated 125.5 Mcal per day, and the following heat loss (y Mcal/day) was brought about by the temperature difference ($X^{\circ}C$) between the digester and atmosphere; y = 0.769X - 5.375. The costs of biogas production per cow were assumed to decrease according to enlargement of feeding scale, especially on scales of more than 30 cows. On recent levels of costs and prices of energy in Japan, they were nearly equal to 2 to 3 fold of the price of municipal mixed gas when a anaerobic digester was compulsorily heated and kept at $30.0^{\circ}C$ or $35.5^{\circ}C$.

The Effect of Soybean Galactooligosaccharides on Nutrient and Energy Digestibility and Digesta Transit Time in Weanling Piglets

  • Zhang, Liying;Li, Defa;Qiao, Shiyan;Wang, Jituan;Bai, Lu;Wang, Zongyi;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1598-1604
    • /
    • 2001
  • Eight $12.4{\pm}0.6kg$ initial body weight crossbred barrows were used to determine the effect of soybean galactooligosaccharides on nutrient and energy digestibility, and digesta transit time. Four dietary treatments were utilized in this trial. Treatment one was a corn-soybean meal based diet (SBM) containing raffinose and stachyose at the levels of 0.16% and 0.75%, respectively. Treatment two (control) was a corn-HP300 (soybean concentrate protein) diet. In treatments three and four, 1.1% and 2.2% commercial stachyose was added to the control diet to provide total dietary stachyose at the levels of 1% and 2%, respectively. The soybean galactooligosaccharides (raffinose + stachyose) level in treatment one was slightly lower compared to that in treatment three. Three collection periods were run with two pigs for each treatment/period. There was a 4 d adjustment period followed by a 3 d collection period. The results showed that the nitrogen retention (86.79%) of pigs fed treatment two diet was higher than that of pigs fed treatment one by 5.2% (p<0.05). The nitrogen retention of treatment three was intermediate 83.09%. The apparent fecal digestibility of all amino acids in treatment two was numerically highest, followed by treatments three and four. However, there were no significant difference among groups (p>0.05). The dry matter (DM), organic matter (OM), crude protein (CP), and crude fiber (CF) digestibility numerically decreased as the soybean galactooligosaccharides level increased, but were not significantly different (p>0.05). Chromium content in feces (from the inclusion of 0.3% chromic oxide in the diets) differed among treatments (p<0.05) at 15 h, 18 h, and 21 h after eating. This showed that the digesta transit time was differed significantly among treatments. Treatment four was the shortest, followed by treatment three, SBM and control. The results demonstrated that in the absence of antinutritional factors and soybean antigen protein, inclusion of 1% and 2% stachyose in corn-HP300 diet has no significant effect on the digestibility of DM, OM, CP, CF and amino acids. When the soybean galactooligosaccharide level in diet one and diet three were adjusted to be almost the same, antinutritional factors such as trypsin inhibitor and soybean antigen protein could decrease the nutrient digestibility and nitrogen retention rate of diet. High levels of soybean galactooligosaccharides shortened the digesta transit time in the intestinal tract. This trial suggested that the total level of soybean galactooligosaccharides (stachyose+raffinose) in the weanling piglet diet is better not to exceed 1% when common soybean meal is used as main protein source.

Response of Yields and Major Characters of Waxy Corn Hybrids under No-Tillage Practice (무경운 재배에서 찰옥수수 교잡종의 수량 및 주요형질의 반응)

  • 이명훈
    • Korean Journal of Organic Agriculture
    • /
    • v.11 no.1
    • /
    • pp.79-88
    • /
    • 2003
  • Saved labor cost, energy conservation, reduced soil erosion, and increase of emergence rate would be expected from no-tillage cultivation of corn. Few research has been reported on the no-tillage effects for waxy corn hybrid. Five waxy com hybrids were tested under conventional and no-tillage practices to investigate responses of early growth, plant characters, ear characters, fresh yield, and grain yield. Emergence rates under no-tillage were lower than under conventional tillage. Plant heights at early growth stages under no-tillage were higher than those under conventional tillage. Plant height under no-tillage was higher than that under conventional tillage. There were no differences between conventional tillage and no-tillage for ear length, number of kernel rows, number of kernels per row, 100 kernels weight, fresh yield, and grain yield. This result indicates that no-tillage practice might be recommended for practical method for waxy com production. Days to tasseling and silking, plant height, ear height, ear length, and number of kernels per row were correlated with fresh and grain yields.

  • PDF

Changes of Physico-chemical Properties during the Composting of Korean Food Waste (음식물찌꺼기를 이용한 퇴비의 부숙과정중 이화학적 특성의 변화)

  • Chang, Ki-Woon;Lee, In-Bog;Lim, Jae-Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • This study was conducted to estimate the stabilization degree of compost which made from Korean food wastes. To make the compost, food wastes were mixed with dried paper sludge, sawdust and the rotten wood waste which had cultivated mushrooms, and then mixture was composted in $1.1m^3$ of chamber which installed with the blower for maintaining the aerobic condition. Y value, EC and pH were changed remarkably for the early stage of composting. These changes showed that the compost of food wastes could be stabilized within 30~35 days and that the substrate, food wastes, can be easily used as energy source for microorganisms. Although these phyico-chemical properties indicated that food wastes could be composted within 30 days during the composting, the temperature of pile maintained over $50^{\circ}C$ for 80 days, and C/N ratio decreased gradually for over 50 days. In conclusion, more than 50 days were required to stabilize the compost of food wastes.

  • PDF