• Title/Summary/Keyword: Energy/electron transfer

Search Result 307, Processing Time 0.025 seconds

The Thioacetate-Functionalized Self-Assembled Monolayers on Au: Toward High-Performance Ion-Selective Electrode for Ag+

  • Jin, Jian;Zhou, Wei-Jie;Chen, Ying;Liu, Yi-Long;Sun, Xiao-Qiang;Xi, Hai-Tao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.601-604
    • /
    • 2014
  • Two classes of morpholino-substitued thioacetate have been successfully synthesized and their electrochemical properties of self-assembled monolayers (SAMs) on Au electrode are measured by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The barrier property of the SAMs-modified surfaces is evaluated by using potassium ferro/ferri cyanide. The results suggest that the arenethioacetate forms higher-quality close-packed blocking monolayers in comparison with alkanethioacetate. Furthermore, it has shown that the barrier properties of these monolayers can be significantly improved by mixed SAMs formation with decanethiol. From our experimental results we find that the electron transfer reaction of $[Fe(CN)_6]^{3/4-}$ redox couple occurs predominantly through the pinholes and defects present in the SAM and both SAMs show a good and fast capacity in recognition for $Ag^+$. The morphological and elementary composition have also been examined by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).

Calculation on Electronic State and Chemical Bonding of $\beta$-$MnO_2$ by DV-X$\alpha$ Method (분자궤도계산법에 의한 $\beta$-$MnO_2$의 전자상태 및 화학결합 계산)

  • 이동윤;김봉서;송재성;김현식
    • Korean Journal of Crystallography
    • /
    • v.14 no.1
    • /
    • pp.16-23
    • /
    • 2003
  • The electronic structure and chemical bonding of β-MnO₂ were theoretically investigated by DV-X/sub α/ (the discrete variation X/sub α/) method. which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The calculations on several cluster models having different sizes were carried out for the determination of a model suited for analyzing bulk state. The Mn/sub 15/O/sub 56/ model was selected as a sufficiently suitable model for the calculation of electronic state and chemical bonding by the comparison of the calculated XPS (X-ray photo-electron spectrum) and experimentally measured XPS. By using this model, the electron energy level, the density of state, the bond overlap population, the charge density distribution, and the net ionic transfer between cations and anions were calculated and discussed.

Improved Tri-iodide Reduction Reaction of Co-TMPP/C as a Non-Pt Counter Electrode in Dye-Sensitized Solar Cells

  • Kim, Jy-Yeon;Lee, Jin-Kyu;Han, Sang-Beom;Lee, Young-Woo;Park, Kyung-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.75-80
    • /
    • 2010
  • We report Co-tetramethoxyphenylporphyrin on carbon particles (Co-TMPP/C) as a non-Pt catalyst for tri-iodide reduction in dye-sensitized solar cells (DSSCs). The presence of well-dispersed carbon and cobalt source in the catalyst surface is confirmed by transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray analysis. In the C 1s, Co 2p, and N 1s peaks measured by X-ray photoelectron spectroscopy, the C-N, Co-$N_4$, and N-C are assigned to the component at 285.7, 781.8, and 401 eV, respectively. Especially, the Co-TMPP/C shows improved current density, diffusion coefficient, and charge-transfer resistance in the ${I_3}^-/I^-$ redox reaction compared to conventional catalysts. Furthermore, in the DSSCs performance, the Co-TMPP/C shows increased short circuit current density, higher open circuit voltage, and improved cell efficieny in comparison with Pt/C.

Heterocyclic Nonlinear Optical Chromophores Composed of Phenothiazine or Carbazole Donor and 2-Cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran Acceptor

  • Cho, Min-Ju;Kim, Ja-Youn;Kim, Jae-Hong;Lee, Seung-Hwan;Dalton, Larry R.;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.77-84
    • /
    • 2005
  • We prepared the new nonlinear optical chromophores that show fairly high microscopic nonlinearity through intramolecular charge transfer. Phenothiazine and carbazole units played an important role to contribute high electron donability and connect the resonance pathway via conjugative effect in the cyclized ring beside the aromatic ring. Theoretical calculation, electrochemical analysis, and absorption spectroscopic study gave us useful information about the energy states and microscopic nonlinearities of two serial chromophores. We compared the microscopic nonlinearities of four chromophores with the conjugation length and electron donability in the push-pull type NLO chromophores. The effect of gradient donability and lengthening the conjugation were investigated on the electronic state and microscopic nonlinearity.

Determination of Reactivity by MO Theory (Part 32). MO Studies of Substituent Effects on the Gas-Phase Decarboxylation of But-3-enoic Acid (분자궤도론에 의한 반응성 결정 (제32보). 3-부테노산의 기체상 탈탄산반응에 미치는 치환기 효과의 분자궤도론적 연구)

  • Jeoung Ki Cho;Ikchoon Lee;Hyuck Keun Oh;In Ho Cho
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.279-283
    • /
    • 1984
  • ${\beta}$-Substituent effect on the reactivity of retro-ene decarboxylation of but-3-enoic acid was investigated theoretically. It was found that charge effect is important not only through ${\pi}$-electron transfer as has been claimed to rationalize experimental results but also through polarization as found for the $CH_3$ substituent. The reactivity was not determined by the charge effect alone but the HOMO-LUMO energy gap was also found to affect the reactivity. In general it was confirmed that the greater the ${\pi}$-electron donating power of the substituent, the greater is the reactivity.

  • PDF

Preparation of Anhydrous Crosslinked Graft Copolymer Electrolyte Membrane (무가습 가교 가지형 공중합체 전해질 막의 제조)

  • Roh, Dong-Kyu;Koh, Joo-hwan;Park, Jung-tae;Seo, Jin-ah;Kim, Jong-hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.270-273
    • /
    • 2009
  • A comb-like copolymer consisting of a poly(vinylidene fluoride-co-chlorotrifluoro-ethylene) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. P(VDF-co-CTFE)-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and a microphase-separated structure of the copolymer were confirmed by proton nuclear magnetic resonance (1H-NMR), FT-IR spectroscopy, and transmission electron microscopy (TEM). This comb-like polymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the -OH groups of PHEA and the -COOH groups of IDA. Upon doping with phosphoric acid ($H_3PO_4$) to form imidazole-$H_3PO_4$ complexes, the proton conductivity of the membranes continuously increased with increasing $H_3PO_4$ content. A maximum proton conductivity of 0.015 S/cm was achieved at $120^{\circ}C$ under anhydrous conditions. In addition, these P(VDF-co-CTFE)-g-PHEA/IDA/$H_3PO_4$ membranes exhibited good mechanical properties (765 MPa of Young's modulus), and high thermal stability up to $250^{\circ}C$, as determined by a universal testing machine (UTM) and thermal gravimetric analysis (TGA), respectively.

  • PDF

Electronic transport properties of linear carbon chains encapsulated inside single-walled carbon nanotubes

  • Tojo, Tomohiro;Kang, Cheon Soo;Hayashi, Takuya;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.28
    • /
    • pp.60-65
    • /
    • 2018
  • Linear carbon chains (LCCs) encapsulated inside the hollow cores of carbon nanotubes (CNTs) have been experimentally synthesized and structurally characterized by Raman spectroscopy and transmission electron microscopy. However, in terms of electronic conductivity, their transportation mechanism has not been investigated theoretically or experimentally. In this study, the density of states and quantum conductance spectra were simulated through density functional theory combined with the non-equilibrium Green function method. The encapsulated LCCs inside (5,5), (6,4), and (9,0) single-walled carbon nanotubes (SWCNTs) exhibited a drastic change from metallic to semiconducting or from semiconducting to metallic due to the strong charge transfer between them. On the other hand, the electronic change in the conductance value of LCCs encapsulated inside the (7,4) SWCNT were in good agreement with the superposition of the individual SWCNTs and the isolated LCCs owing to the weak charge transfer.

Highly Efficient Three Wavelength WOLEDs by Controlling of Electron-Transfer

  • Park, Ho-Cheol;Park, Jong-Wook;Oh, Seong-Geu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2299-2302
    • /
    • 2009
  • By controlling the number of electrons transferred to the emitting layer, highly efficient three-wavelength WOLEDs were fabricated. Such WOLEDs are different from those made using simple stacking of RGB emitting layers in that the movement distribution of electrons transferred to emitting layer could be adjusted using the difference in LUMO energy level and that lights of all 3 wavelengths could be emitted through appropriate arrangement of RGB emitting layers. WOLED device with the structure of m-MTDTA (40 nm)/NPB (10 nm)/ Coumarin6 doped $Alq_3$ (3%) (8 nm)/ Rubrene doped NPB (5%) (15 nm)/NPB (2 nm)/ DPVBi (20 nm)/$Alq_3$ (20 nm)/LiF (1 nm)/Al (200 nm) showed high luminance efficiency of 8.9 cd/A and color purity of (0.31, 0.40). In addition, WOLED device with the thickness of non-doped NPB layer increased from 2 nm to 3 nm to increase blue light emission showed a luminance efficiency of 7.6 cd/A and color purity of (0.28, 0.36).

Characteristic Study of X-ray convert material by Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 X선 변환물질의 특성 연구)

  • Kim, Jin-Young;Park, Ji-Koon;Kang, Sang-Sik;Kim, So-Young;Jung, Eun-Sun;Nam, Sang-Hee;Kang, Sin-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.418-421
    • /
    • 2003
  • Today, much terminologies such as noise spectrum, Sharpness, contrast, MTF had been defined for Image quality revaluation of radiation Image. Since development of Xeroradiography In the 1970s, Digital radiation detector that use amorphous selenium was developed. The aim of this research is to analyze physical phenomenon of digital radiation detector that use amorphous selenium. Result of Monte Carlo simulations on amorphous selenium based on physical properties(creation of electron-hole pairs) by induced x-ray are described. From the simulation, intrinsic point spread function(PSF) was found and used to observe modulation transfer function(MTF). We investigated how PSF and MTF changed with various x-ray energy. This result can be used to design digital x-ray detector based on a-Se.

  • PDF

Calibration of HEPD on KOMPSAT-1 Using the KCCH Cyclotron

  • Shin, Young-Hoon;Rhee, Jin-Geun;Min, Kyoung-Wook;Lee, Chun-Sik;Lee, Ju-Hahn;Kwon, Young-Kwan;Kim, Jong-Chan;Ha, Jang-Ho;Park, Se-Hwan;Lee, Chang-Hack;Park, H.S.;Kim, Young-Kyun;Chai, Jong-Seo;Kim, Yu-Seong;Lee, Hye-Young
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 1999
  • Space Physics Sensor (SPS) on-board the KOMPSAT-1 consists of the High Energy Particle Detector (HEPD) and the Ionospheric Measurement Sensor (IMS). The HEPD is to characterize the low altitude high energy particle environment and the effects on the microelectronics due to these high energy particles. It is composed of four sensors: Proton and Electron Spectrometer(PES), Linear Energy Transfer Spectrometer (LET), Total Dose Monitor (TDM), and Single Event Monitor (SEM). 35 MeV proton beam from the medical KCCH cyclotron, at Korea Cancer Center Hospital in Seoul, is used to calibrate the PES. Primary proton beam of 35MeV scattered by polypropylene target is converted to various energy protons according to the elastic collision kinematics. In this calibration, the threshold level of the proton in the PES can be determined and the energy ranges of PES channels are also calibrated.