• Title/Summary/Keyword: Endplate

Search Result 85, Processing Time 0.023 seconds

Dynamic increase factor for progressive collapse of semi-rigid steel frames with extended endplate connection

  • Huang, Ying;Wu, Yan;Chen, Changhong;Huang, Zhaohui;Yao, Yao
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.617-628
    • /
    • 2019
  • As an extremely destructive accident, progressive collapse is defined as the spread of an initial local failure from element to element, resulting eventually in the collapse of an entire structure or disproportionately large of it. To prevent the occurrence of it and evaluate the ability of structure resisting progressive collapse, the nonlinear static procedure is usually adopted in the whole structure design process, which considered dynamic effect by utilizing Dynamic Increase Factor (DIF). In current researches, the determining of DIF is performed in full-rigid frame, however, the performance of beam-column connection in the majority of existing frame structures is not full-rigid. In this study, based on the component method proposed by EC3 guideline, the expression of extended endplate connection performance is further derived, and the connection performance is taken into consideration when evaluated the performance of structure resisting progressive collapse by applying the revised plastic P-M hinge. The DIF for structures with extended endplate beam-column connection have been determined and compared with the DIF permitted in current GSA guideline, the necessity of considering connection stiffness in determining the DIF have been proved.

Clinical and Radiologic Analysis of Posterior Apophyseal Ring Separation Associated with Lumbar Disc Herniation

  • Bae, Jung-Sik;Rhee, Woo-Tack;Kim, Woo-Jae;Ha, Seong-Il;Lim, Jae-Hyeon;Jang, Il-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.3
    • /
    • pp.145-149
    • /
    • 2013
  • Objective : We analyzed the clinical and radiologic features of posterior apophyseal ring separation (PARS) with lumbar disc herniation and suggest the proper management options according to the PARS characteristics. Methods : We reviewed case series of patients with PARS who underwent surgery of lumbar disc herniation. Preoperative symptoms, neurologic status, Body Mass Index, preoperative and postoperative Visual Analogue Scale (VAS) and Korean-Oswestry Disability Index (K-ODI) scores, operation types were obtained. PARS size, locations, the degree of resection were assessed. Results : PARS was diagnosed in 109 (7.5%) patients among 1448 patients given surgical treatment for single level lumbar disc herniation. There were 55 (50.5%) small PARS and 54 (49.5%) large PARS. Among the large PARS group, 15 (27.8%) had lower endplate PARS of upper vertebra at the level of disc herniation. Thirty-nine (72.2%) were upper endplate PARS of lower vertebra. Among the group with upper endplate PARS of lower vertebra, unresected PARS was diagnosed in 12 (30.8%) cases and resected PARS was diagnosed in 27 (69.2%) cases. VAS and K-ODI scores changes were $3.6{\pm}2.9$ and $5.4{\pm}6.4$ in the unresected PARS group, $5.8{\pm}2.1$ and $11.3{\pm}7.1$ in the resected PARS group. The group with upper endplate PARS of lower vertebra showed significant difference of VAS (p=0.01) and K-ODI (p=0.013) score changes between unresected and resected PARS groups. Conclusion : The large PARS of upper endplate in lower vertebra should be removed during the surgery of lumbar disc herniation. High level or bilateral side of PARS should be widely decompressed and arthrodesis procedures are necessary if there is a possibility of secondary instability.

An Algorithm for Distinction between Denervation Potentials and Endplate Spikes on EMG Diagnosis (근전도 검사에서 나타나는 탈신경전위와 종판전위의 구별을 위한 알고리듬)

  • Choi, H.B.;Hwang, Y.S.;Park, I.S.;Im, J.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.383-386
    • /
    • 1997
  • In the EMG evaluation, the neuropathy may be diagnosed by a detection of denervation potentials in the group of muscles. These abnomal potentials might be confused with normal endplate spikes. In this paper we present the software algorithm in C, which automatically detects spontaneous activity such as denervation potentials and endplate potentials and distingushes between those potentials. Parameters with statistically significant differences were used for this automated algorithm. It was concluded that the algorithm established in this study will improve accuracy in EMG diagnosis.

  • PDF

Stress Redistributions due to the Shape of Sliding Core and Applied Load Core in the Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 형상과 하중모드에 따른 응력 재분포)

  • Kang Bong-Su;Kim Cheol-Woong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.515-516
    • /
    • 2006
  • The goal of total disc replacement is to restore pain-free mobility to a diseased functional spinal unit, by replacing the degenerated disc with a mobile bearing prosthesis. SB Charite III is named commercial product as the Artificial Intervertebral Disc (AID). SB Charite III consists of sliding core and endplate made by Ultra-high Molecular Weight Polyethylene (UHMWPE) and cobalt chrome alloy, respectively. To evaluate the effect of von-Mises stress in AID, and three-dimensional finite element model of AID analysis was preformed for four different loading types of sliding core. Consequently, endplate was compared with a compressive preload at 400N and flexion moment at $3{\sim}9Nm4. Therefore, this research has obtained result that von-Mises stress of sliding core in AID disc by radius curvature.

  • PDF

A Study for the Distinction between Denervation Potentials and Endplate Spikes for the Diagnosis of Neuropathy (신경질환의 진단을 위한 탈신경 전위와 종판 전위의 구별에 관한 연구)

  • 임재중;김남균;황윤성;박인선
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.451-459
    • /
    • 1999
  • During the electromyographic evaluation for the diagnosis of neuropathy, presence for site of lesion could be predicted by a detection of denervation potentials such as fibrillation potentials or positive sharp waves in a group of muscles. Unfortunately, since denervation potentials are distinguished by examiner's experience, it is possible to make mistake identifying endplate spikes as a denervation potential. The aim of the study was to extract parameters to make an algorithm for quantitative distinction between denervation potentials and endplate spikes. It will help to minimize the examiner's bias and to localize the site of lesion thus increase the reliability on EMG diagnosis. There types of signals, endplate spike, fibrillation potential and positive sharp wave were obtained from the EDB(extensor digitorum brevis) muscle using then neuropathic patients. Eight parameters such as duration, area, slope, peak-to-peak amplitude, positive peak negative peak amplitude, ratio of positive to negative peak amplitude, and number of phase were extracted and compared. As a results, peak-to-peak amplitude, positive peak amplitude, ratio of positive to negative peak amplitude showed statistically significant differences between endplate spikes and denervation potentials. It was concluded that those parameters could be used to establish an algorithm which will improve the accuracies in automated quantitative EMG diagnosis.

  • PDF

Current Concepts of Degenerative Disc Disease -A Significance of Endplate- (퇴행성 추간판 질환의 최신 지견 -종판의 중요성-)

  • Soh, Jaewan;Jang, Hae-Dong;Shin, Byung-Joon
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.4
    • /
    • pp.283-293
    • /
    • 2021
  • Degenerative disc disease has traditionally been thought of as low back pain caused by changes in the nucleus pulposus and annulus fibrous, in recent studies, however, changes in the upper and lower endplates cause degeneration of the disc, resulting in mechanical pressure, inflammatory reactions and low back pain. Recently, the bone marrow of the vertebral body-endplate-nucleus pulposus and annulus fibrous were considered as a single unit, and the relationship was explained. Once the endplate is damaged, it eventually aggravates the degeneration of the bone marrow, nucleus pulposus, and annulus fibrosus. In this process, the compression force of the annulus fibrosus increases, and an inflammatory reaction occurs due to inflammatory mediators. Hence, the sinuvertebral nerves and the basivertebral nerves are stimulated to cause back pain. If these changes become chronic, degenerative changes such as Modic changes occur in the bone marrow in the vertebrae. Finally, in the case of degenerative intervertebral disc disease, the bone marrow of the vertebral body-endplate-nucleus pulposus and annulus fibrous need to be considered as a single unit. Therefore, when treating patients with chronic low back pain, it is necessary to consider the changes in the nucleus pulposus and annulus fibrosus and a lesion of the endplate.

Behaviour and design of bolted endplate joints between composite walls and steel beams

  • Li, Dongxu;Uy, Brian;Mo, Jun;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.33-47
    • /
    • 2022
  • This paper presents a finite element model for predicting the monotonic behaviour of bolted endplate joints connecting steel-concrete composite walls and steel beams. The demountable Hollo-bolts are utilised to facilitate the quick installation and dismantling for replacement and reuse. In the developed model, material and geometric nonlinearities were included. The accuracy of the developed model was assessed by comparing the numerical results with previous experimental tests on hollow/composite column-to-steel beam joints that incorporated endplates and Hollo-bolts. In particular, the Hollo-bolts were modelled with the expanded sleeves involved, and different material properties of the Hollo-bolt shank and sleeves were considered based on the information provided by the manufacture. The developed models, therefore, can be applied in the present study to simulate the wall-to-beam joints with similar structural components and characteristics. Based on the validated model, the authors herein compared the behaviour of wall-to-beam joints of two commonly utilised composite walling systems (Case 1: flat steel plates with headed studs; Case 2: lipped channel section with partition plates). Considering the ease of manufacturing, onsite erection and the pertinent costs, composite walling system with flat steel plates and conventional headed studs (Case 1) was the focus of present study. Specifically, additional headed studs were pre-welded inside the front wall plates to enhance the joint performance. On this basis, a series of parametric studies were conducted to assess the influences of five design parameters on the behaviour of bolted endplate wall-to-beam joints. The initial stiffness, plastic moment capacity, as well as the rotational capacity of the composite wall-to-beam joints based on the numerical analysis were further compared with the current design provision.

Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns

  • Ren, Qing-Xin;Hou, Chao;Lam, Dennis;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.667-686
    • /
    • 2014
  • Tapered concrete filled double skin steel tubular (CFDST) columns have been used in China for structures such as electricity transmission towers. In practice, the bearing capacity related to the connection details on the top of the column is not fully understood. In this paper, the experimental behaviour of tapered CFDST stub columns subjected to axial partial compression is reported, sixteen specimens with top endplate and ten specimens without top endplate were tested. The test parameters included: (1) tapered angle, (2) top endplate thickness, and (3) partial compression area ratio. Test results show that the tapered CFDST stub columns under axial partial compression behaved in a ductile manner. The axial partial compressive behaviour and the failure modes of the tapered CFDST stub columns were significantly influenced by the parameters investigated. Finally, a simple formula for predicting the cross-sectional capacity of the tapered CFDST sections under axial partial compression is proposed.

A Study on Rotation Behavior of High Strength Steel Endplate Connections under Fire (화재시 고강도강 엔드플레이트 접합부의 회전 거동에 관한 연구)

  • Shin, Su-Min;Lee, Chy-Hyoung;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.35-43
    • /
    • 2016
  • In order to understand rotation behavior of high strength steel endplate connections under fire, this study is compared with existing studies conducted using FEA program. Eurocode 3 presents the three failure modes according to the prediction of bending resistance moment. The parameters of analysis model are temperature, thickness and steel materials of endplate. The rotation stiffness, and bending resistance moment are analyzed according to the parameters. The change of rotation stiffness and bending resistance moment are analyzed about the parameters, regression equations are suggested the change of high strength steel endplate connections. Consequently, the regression equations were proposed as the linear and quadratic equation. The moment ratio of high strength steel under fire was more reduced than the carbon steel, and was small effect about the thickness. When the high strength steel under fire was compared with at ambient temperature, the slope of initial rotation stiffness reduced, the increment ratio of moment was slow, and the change of plastic rotation stiffness wasn't effect by the thickness increase.

A Study on the Performance of the Wing In Ground Effect by a Vortex Lattice Method (와류 격자법에 의한 지면효과익의 성능 연구)

  • Jeong, Gwang-Hyo;Jang, Jong-Hui;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.87-96
    • /
    • 1998
  • A numerical simulation was done to investigate the performance of thin wings in close vicinity to ground. The simulation is based on Vortex Lattice Method(VLM) and freely deforming wake elements are taken into account for a sudden acceleration case. The parameters covered in the simulation are angle of attack, aspect ratio, ground clearance, sweep angle and taper ratio. In addition, the effect of the wing endplate on the ground effect is included. The wing sections used for present computations are uncambered, cambered and S-types. The present computational results are compared with other published computational results and experimental data.

  • PDF