• Title/Summary/Keyword: Endosulfan alpha

Search Result 48, Processing Time 0.033 seconds

in Vitro Metabolism Study of ${\alpha}$-Endosulfan with Microsomal Cytochrome P-450 Monooxygenase (생쥐에서 Cytochrome P-450 효소계에 의한 ${\alpha}$-Endosulfan의 시험관내 대사시험)

  • Kim, In-Seon;Lee, Kang-Bong;Shim, Jae-Han;Suh, Yong-Tack
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.463-467
    • /
    • 1995
  • In vitro metabolism study of ${\alpha}$-endosulfan by liver and kidney microsomal cytochrome P-450 monooxygenase system of the mouse(Balb/C) was performed. ${\alpha}$-Endosulfan was metabolized to endosulfan lactone(EL), endosulfan hydroxyether(EHE), endosulfan alcohol(EA), endosulfan sulfate(ES), endosulfan ether(EE) and ${\beta}$-endosulfan(${\beta}$-E). The main metabolites of ${\alpha}$-endosulfan were EL(13.2%) and EA(11.5%) in liver microsome and EA(17.4%) md EHE(19.3%) in kidney microsome. The $^{14}C$-activity of organic extractable fraction and water soluble fraction were 63.4% and 31.7% in liver micosome incubates respectively. The water soluble metabolites were EA(83.9%), EHE(4.5%) and ES(2.3). Piperonyl butoxide treatment inhibited the formation of EE by 86%, EA by 92% and EHE, EL and ES were barely formed.

  • PDF

Photodegradation of Endosulfan alpha, beta, and sulfate in Aqueous Solution by UV Irradiation Only (자외선 조사에 의한 수용액 중에 함유되어 있는 엔도설판 alpha, beta, sulfate의 광분해)

  • Ryoo, Keon-Sang;Kim, Mi-Hyang;Lee, Hwa-Sung;Hwang, Hyun-Gick
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1061-1067
    • /
    • 2006
  • Photodegradation of endosulfan alpha, beta, and sulfate known as the most toxic substance among organochlorine pesticides by UV irradiation was studied at experimental conditions such as different pH aqueous solution and reaction time. The initial concentration of endosulfan alpha, beta, and sulfate in aqueous solution was 500 ppb, respectively. The experiment of photodegradation was conducted in a quartz reactor equipped with a low pressure mercury lamp (100 W, 240 nm). The samples were withdrawn from the photo reactor at intervals of 0, 10 min, 30 min, 1 hr, 2 hr, and 4 hr. Endosulfan sulfate was never hydrolyzed and photodegraded in wide range of pH. At pH 5 and reaction time (240 min), endosulfan alpha was photodegraded up to 67%. Both endosulfan alpha and beta were started to photodegrade at pH 6.5 with the lapse of time, resulting in approximately 99.9% and 87.2% of photodegradation efficiency, respectively. Furthermore, at pH 9, endosulfan alpha and beta was partially hydrolyzed and photodegraded to 99.5% at 120 min of reaction time. During the photolysis, any photo-products of endosulfan alpha, beta, and sulfate were not observed.

Dechlorination of Organochlorine Insecticide, Endosulfan by Zerovalent Iron (Zerovalent Iron에 의한 유기염소계 살충제 Endosulfan의 탈염소화)

  • Shin, Hyun-Su;Kim, Taek-Kyum;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.202-208
    • /
    • 2009
  • The dechlorination of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) and its metabolite, endosulfan sulfate via reaction with zerovalent iron under various pH conditions was studied using aqueous solution. The reaction products, which were probably produced from endosulfan and endosulfan sulfate by ZVI were identified by GC-MS. The lower the pH of reaction solution, the higher the transformation rate of endosulfan and endosulfan sulfate. The transformation rates of endosulfan and endosulfan sulfate in pH 3.0 by ZVI were 28% and 90% but those of endosulfan and endosulfan sulfate in mixture solution of water/acetone were 65% and 92%, respectively. The pH of reaction solution after ZVI treatment was increased to pH 10. Endosulfan was hydrolyzed at pH 10 but endosulfan sulfate was not hydrolyzed. Two unknown peaks were produced from endosulfan sulfate by treatment of ZVI. As a result of GC-MS analysis, unknown peaks were guessed to be structural isomer substituted hydrogen for chlorine.

Metabolism of $^{14}C-{\alpha}-Endosulfan$ in Mouse in vivo (생쥐 체내에서 $^{14}C-{\alpha}-Endosulfan$의 대사)

  • Kim, In-Seon;Lee, Kang-Bong;Shim, Jae-Han;Suh, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.70-76
    • /
    • 1996
  • Absorption, distribution, excretion and metabolism of $^{14}C-{\alpha}-Endosulfan$[1,4,5,6,7,7-hexachloro-8,9,10-=trinorborn-5-en 2,3-ylenebismethylene]sulfite) were studied in male mouse(Balb/c) after single intraperitoneal treatment as the dose level of 7.5 mg/kg body weights. After treatment of $^{14}C-{\alpha}-endosulfan$, the radioactivity was rapidly excreted into the urine(63.9 %) within 4 days, thereafter the excretion ratio was constant. Radioactivity levels in the tissues was reached maximum 0.5 hr in heart, 2 hrs in liver and kidney after the treatment, then decreased with time. Endosulfan was metabolized to ${\beta}-endosulfan({\beta}-E)$, endosulfan ether(EE), endosulfan sulfate(ES), and endosulfan alcohol(EA). The main metabolites were EA(13.25 %) in liver and endosulfan hydroxyether(EHE)(19.37 %) in kidney. The urinary metabolites were EA(43.21 %), ES(4.78 %), ${\beta}-E$(7.21 %), EE(3.72 %) and EHE(18.04 %).

  • PDF

A study on removal effect of Endosulfan in soil and aquatic system (수질 및 토양 중 Endosulfan 제거효과에 관한 연구)

  • An, Jung-Hyeok;Lee, Seog-Jong;Lee, Woan;Kim, Joon-Bum;Lee, Gwang-Chun;Kwon, Young-Du;Jeon, Choong;Park, Kwang-Ha
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2006
  • In this study, a series of experiments were conducted using a standard solution containing ${\alpha}$ and ${\beta}$-endosulfan to follow the removal effect of residual pesticides on soil and aqueous solution. An analytical method for residual pesticides was established by a gas chromatography equipped Ultra II[$(30m{\times}0.25mm(ID){\times}0.25{\mu}m$] capillary column and a ${\mu}$-electron capture detector(${\mu}$-ECD). Recovery rates of residual pesticides for soil samples were 96-100%. The amount of ${\alpha}$ and ${\beta}$-endosulfan that was spread in the soil was checked for various period of time. It indicated that the amount was reduced to 73 and 61%, respectively. When the water spread amount increased from 10 to 100 mL, ${\alpha}$-endosulfan was eliminated from 45 to 85% and while ${\beta}$-endosulfan from 44 to 88%. Removal rates of ${\alpha}$-endosulfan and ${\beta}$-endosulfan were 99% and 98% respectively within 30 minutes. It was assumed that the organic salts and strong alkali elements contained in the pesticide degradator hydrolyzed the residual pesticide.

In vivo Metabolism of Endosulfan in Carp (Cyprinus carpio) (In vivo 시험에 의한 잉어체내 $^{14}C-endosulfan$의 대사)

  • Lee, K.B.;Shim, J.H.;Suh, Y.T.
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.203-209
    • /
    • 1994
  • When $^{14}C-{\alpha}-endosulfan$ was incubated with carp liver, kidney and gut preparations, it was metabolized to water soluble and organosoluble metabolites. In an in vitro test, endosulfan was converted to endosulfan ${\alpha}-hydroxyether$ (EHE), endosulfan alcohol (EA) and endosulfan ether (EE). The addition of NADPH resulted in rapid conversion of endosulfan to the metabolites in 105,000 g soluble fraction and microsomes. However, the rate of metabolism of endosulfan in liver, kidney and gut supplemented with NADPH as a cofactor was higher in the 105,000 g soluble fraction than that in the microsomes of carp under incubation conditions. The enzymes probably involved in the metabolism of endosulfan include the glutathione S-transferase (GST) and the mixed function oxidases (MFO), based on the evidence that addition of either GSH or NADPH increased the degradation of endosulfan.

  • PDF

In vivo Metabolism of Endosulfan in Carp (cyprinus carpio L.) (In vivo 시험에 의한 잉어(cyprinus carpio L.)체내 endosulfan의 대사)

  • Lee, K.B.;Shim, J.H.;Suh, Y.T.
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.194-202
    • /
    • 1994
  • To study the metabolism and absorption of endosulfan in carp, $^{14}C-{\alpha}-endosulfan$ was treated with the $LC_{10}$ concentration $(4.5\;{\mu}g/L)$. In an in vivo test, endosulfan was metabolized $(65{\sim}80%)$ in tissues and endosulfan ether, endosulfan alcohol, endosulfan ${\alpha}-hydroxyether$, and endosulfan lactone were identified, indicating that those are the main metabolites of detoxification in carp. The maximum levels of $^{14}C-endosulfan$ in the head, muscle, and gut occurred after 8 hr exposure. However, the maxima reached in the liver and kidneys after 30 min and 4 hr, respectively. Radioactivity in the tissue decreased rapidly 8 hr after treatment. The total amount of $^{14}C-endosulfan$ recovered in the liver, kidneys and gut of fish was about $80{\sim}90%$ during the 8 hr treatment. The non-extractable radioactivity increased after 8 hr exposure $(27{\sim}31%)$. Endosulfan sulfate, the main degradation product in plant and mouse, was not detected during the test interval from tissues of the carp.

  • PDF

Removal effect of residual pesticides in red pepper powder by UV irradiation (자외선 조사에 의한 고춧가루 중 잔류농약 제거효과 연구)

  • Jung, You-Jung;Eom, Mi-Na;Jeong, Il-Hyung;Son, Jong-Sung;Kim, Kyung-A;Shin, Sang-Woon;Oh, Sang-Hun;Kim, Bong-Real;Chae, Kyeng-Suk;Yoon, Mi-Hye
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.2
    • /
    • pp.145-150
    • /
    • 2012
  • This study was carried out to investigate the degradation of six residual pesticides (${\alpha}$- and ${\beta}$-Endosulfan, Cypermethrin, Fenitrothion, Hexaconazole, EPN) in red pepper powder after ultraviolet (UV) irradiation. The residual ratio of pesticides after 365 nm irradiation which distance is 20 cm and irradiation time is 5 minutes were 73.4, 69.6, 60.8, 92.7, 73.8 and 90.5% in ${\alpha}$-Endosulfan, ${\beta}$-Endosulfan, Cypermethrin, Fenitrothion, Hexaconazole and EPN, respectively. The residual ratio of pesticides after 254 nm irradiation which distance is 5 cm and irradiation time is 36 hours were 74.6, 64.5, 71.1, 79.1, 79.4 and 64.7% in ${\alpha}$-Endosulfan, ${\beta}$-Endosulfan, Cypermethrin, Fenitrothion, Hexaconazole and EPN, respectively.

Study on the Level of Organochlorine Pesticide Residues in Agricultural Products (농산물 중 유기염소계 잔류 농약에 관한 연구)

  • 엄미나;장재철;정진아;유영희;지의상
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.5
    • /
    • pp.446-456
    • /
    • 2001
  • This study was carried out for the dietry safely based on the level of pesticide residues In 13 kinds of agricultural products consumed in Kyonggi-Do. Korea. From June to October 2000, sixteen organochlorine pesticides in 397 samples were analyzed by using GC/ECD and GC/MSD. According to the results, endosulfan were detected in 27(7.8%) samples and chlorothalonil were detected in 4(1.0%) samples. Detection ranges of endosulfan were 3.7437∼ 0.0488ppm for lettuce, 2.1902 ∼0.1423ppm for spinach, 2.4909 ∼0.0786ppm for mallow and 3.2333∼0.3997ppm for mustard leaf, respectively Chlorothalonil were 5.8097 for lettuce and 0.8962ppm for spinach. Consequently, six agricutural products were detected more than the maximum residue limits in Korea Endosulfan were detected In 5(1.8%) samples and cholrothalonil were detected in 1(0.3%) sample. Detection rates of endosulfan sulfate(45.9%) of agricultural products were more than $\alpha$-endosulfan(28.5% ) and $\beta$-endosulfan (23.9% ) .

  • PDF

Removal and Decomposition of Organochlorine Compounds in Water Using UV Irradiation (자외선에너지를 이용하여 물속에 함유된 유기염소계 화합물의 분해 및 제거)

  • Kim, Jong Hyang
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.30-34
    • /
    • 1999
  • Photolysis behavoirs of pesticides(Chlorothalonil and Endosulfan) over UV irradiation UV irradiation with pH 3.0 and irradiation with 3.5% salt were studied. The analyses of pesticides were carried out using gas chromatograph with an electron-capture detector, total organic carbon, and Ion chromatograph, respectively. The reactions were conducted in a alumium annular reactor equipped with a low pressure mercury multilamp ($8W{\times}6$) and initial concentration was 10 ppm. Chlorothalonil was almost photodegraded by UV irradiation, UV irradiation with pH 3.0 and 3.5% salt within 30 min of reaction time. Endosulfan-${\alpha}$,${\beta}$(100%) were photodegraded to 38% of Endosulfan-${\alpha}$ and 25% of Endisulfan-${\beta}$ by UV irradiation. Endosulfan-${\alpha}$(83%) was photodegraded to 66% by UV irradiation, 70% by UV irradiation and pH 3.0 and 75% by UV irradiation and 3.5% salt. Endosulfan-${\beta}$(16%) was photodegraded to 80% by UV irradiation, 98% by UV irradiation and pH 3.0 and 90% by UV irradiation and 3.5% salt.

  • PDF