• 제목/요약/키워드: Endoplasmic Reticulum stress

검색결과 212건 처리시간 0.033초

ER Stress에 의해 유발된 C6 Glial Cells의 손상에 대한 용뇌(龍腦)의 보호효과 (Protective Effect of Borneolum on ER Stress-induced Damage in C6 Glial Cells)

  • 전인철;방창호;문병순;이인
    • 동의생리병리학회지
    • /
    • 제23권6호
    • /
    • pp.1368-1378
    • /
    • 2009
  • Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER response is characterized by changes in specific proteins, induction of ER chaperones and degradation of misfolded proteins. Also, the pathogenesis of several diseases like Alzheimer's disease, neuronal degenerative diseases, and diabetes reveal the role of ER stress as one of the causative mechanisms. Borneolum has been used for neuronal disease in oriental medicine. In the present study, the protective effect of borneolum on thapsigargin-induced apoptosis in rat C6 glial cells. Treatment with C6 glial cells with 5 uM thapsigargin caused the loss of cell viability, and morphological change, which was associated with the elevation of intracellular $Ca^{++}$ level, the increase in Grp78 and CHOP and cleavage of pro-caspase 12 Furthermore, thapsigargin induced Grp98, XBP1, and ATF4 protein expression in C6 glial cells. Borneolum reduced thapsigargin-induced apoptosis through ER pathways. In the ER pathway, borneolum attenuated thapsigargin-induced elevations in Grp78, CHOP, ATF4, and XBP1 as well as reductions in pro-caspase 12 levels. Also, our data showed that borneolum protected thapsigargin-induced cytotoxicity in astrocytes from rat (P3) brain. Taken together, our data suggest that borneolum is neuroprotective against thapsigargin-induced ER stress in C6 glial cells and astrocytes. Accordingly, borneolum may be therapeutically useful for the treatment of thapsigargin-induced apoptosis in central nervous system.

Toxoplasma gondii Induces Apoptosis via Endoplasmic Reticulum Stress-Derived Mitochondrial Pathway in Human Small Intestinal Epithelial Cell-Line

  • Wang, Hao;Li, Chunchao;Ye, Wei;Pan, Zhaobin;Sun, Jinhui;Deng, Mingzhu;Zhan, Weiqiang;Chu, Jiaqi
    • Parasites, Hosts and Diseases
    • /
    • 제59권6호
    • /
    • pp.573-583
    • /
    • 2021
  • Toxoplasma gondii, an intracellular protozoan parasite that infects one-third of the world's population, has been reported to hijack host cell apoptotic machinery and promote either an anti- or proapoptotic program depending on the parasite virulence and load and the host cell type. However, little is known about the regulation of human FHs 74 small intestinal epithelial cell viability in response to T. gondii infection. Here we show that T. gondii RH strain tachyzoite infection or ESP treatment of FHs 74 Int cells induced apoptosis, mitochondrial dysfunction and ER stress in host cells. Pretreatment with 4-PBA inhibited the expression or activation of key molecules involved in ER stress. In addition, both T. gondii and ESP challenge-induced mitochondrial dysfunction and cell death were dramatically suppressed in 4-PBA pretreated cells. Our study indicates that T. gondii infection induced ER stress in FHs 74 Int cells, which induced mitochondrial dysfunction followed by apoptosis. This may constitute a potential molecular mechanism responsible for the foodborne parasitic disease caused by T. gondii.

Induction of ER Stress-Mediated Apoptosis by ${\alpha}$-Lipoic Acid in A549 Cell Lines

  • Kim, Jong-In;Cho, Sung-Rae;Lee, Chang-Min;Park, Eok-Sung;Kim, Ki-Nyun;Kim, Hyung-Chul;Lee, Hae-Young
    • Journal of Chest Surgery
    • /
    • 제45권1호
    • /
    • pp.1-10
    • /
    • 2012
  • Background: ${\alpha}$-Lipoic acid (${\alpha}$-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of ${\alpha}$-LA in a lung cancer cell line, A549. Materials and Methods: ${\alpha}$-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription.polymerase chain reaction analyses. Results: ${\alpha}$-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. ${\alpha}$-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by ${\alpha}$-LA, and the antioxidant N-acetyl-L-cysteine decreased the ${\alpha}$-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion: ${\alpha}$-LA induced ER stress-mediated apoptosis in A549 cells via ROS. ${\alpha}$-LA may therefore be clinically useful for treating lung cancer.

Development of a Reporter System Monitoring Regulated Intramembrane Proteolysis of the Transmembrane bZIP Transcription Factor ATF6α

  • Kim, Jin-Ik;Kaufman, Randal J.;Back, Sung Hoon;Moon, Ja-Young
    • Molecules and Cells
    • /
    • 제42권11호
    • /
    • pp.783-793
    • /
    • 2019
  • When endoplasmic reticulum (ER) functions are perturbed, the ER induces several signaling pathways called unfolded protein response to reestablish ER homeostasis through three ER transmembrane proteins: inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Although it is important to measure the activity of ATF6 that can indicate the status of the ER, no specific cell-based reporter assay is currently available. Here, we report a new cell-based method for monitoring ER stress based on the cleavage of $ATF6{\alpha}$ by sequential actions of proteases at the Golgi apparatus during ER stress. A new expressing vector was constructed by using fusion gene of GAL4 DNA binding domain (GAL4DBD) and activation domain derived from herpes simplex virus VP16 protein (VP16AD) followed by a human $ATF6{\alpha}$ N-terminal deletion variant. During ER stress, the GAL4DBD-VP16AD(GV)-$hATF6{\alpha}$ deletion variant was cleaved to liberate active transcription activator encompassing GV-$hATF6{\alpha}$ fragment which could translocate into the nucleus. The translocated GV-$hATF6{\alpha}$ fragment strongly induced the expression of firefly luciferase in HeLa Luciferase Reporter cell line containing a stably integrated 5X GAL4 site-luciferase gene. The established double stable reporter cell line HLR-GV-$hATF6{\alpha}$(333) represents an innovative tool to investigate regulated intramembrane proteolysis of $ATF6{\alpha}$. It can substitute active pATF6(N) binding motif-based reporter cell lines.

Inactivation of Sirtuin2 protects mice from acetaminophen-induced liver injury: possible involvement of ER stress and S6K1 activation

  • Lee, Da Hyun;Lee, Buhyun;Park, Jeong Su;Lee, Yu Seol;Kim, Jin Hee;Cho, Yejin;Jo, Yoonjung;Kim, Hyun-Seok;Lee, Yong-ho;Nam, Ki Taek;Bae, Soo Han
    • BMB Reports
    • /
    • 제52권3호
    • /
    • pp.190-195
    • /
    • 2019
  • Acetaminophen (APAP) overdose can cause hepatotoxicity by inducing mitochondrial damage and subsequent necrosis in hepatocytes. Sirtuin2 (Sirt2) is an $NAD^+$-dependent deacetylase that regulates several biological processes, including hepatic gluconeogenesis, as well as inflammatory pathways. We show that APAP decreases the expression of Sirt2. Moreover, the ablation of Sirt2 attenuates APAP-induced liver injuries, such as oxidative stress and mitochondrial damage in hepatocytes. We found that Sirt2 deficiency alleviates the APAP-mediated endoplasmic reticulum (ER) stress and phosphorylation of the p70 ribosomal S6 kinase 1 (S6K1). Moreover, Sirt2 interacts with and deacetylates S6K1, followed by S6K1 phosphorylation induction. This study elucidates the molecular mechanisms underlying the protective role of Sirt2 inactivation in APAP-induced liver injuries.

Ginsenoside compound K ameliorates palmitate-induced atrophy in C2C12 myotubes via promyogenic effects and AMPK/autophagy-mediated suppression of endoplasmic reticulum stress

  • Kim, Tae Jin;Pyun, Do Hyeon;Kim, Myeong Jun;Jeong, Ji Hoon;Abd El-Aty, A.M.;Jung, Tae Woo
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.444-453
    • /
    • 2022
  • Background: Compound K (CK) is among the protopanaxadiol (PPD)-type ginsenoside group, which produces multiple pharmacological effects. Herein, we examined the effects of CK on muscle atrophy under hyperlipidemic conditions along with its pro-myogenic effects. Further, the molecular pathways underlying the effects of CK on skeletal muscle have been justified. Methods: C2C12 myotubes were treated with palmitate and CK. C2C12 myoblasts were differentiated using CK for 4-5 days. For the in vivo experiments, CK was administered to mice fed on a high-fat diet for 8 weeks. The protein expression levels were analyzed using western blotting analysis. Target protein suppression was performed using small interfering (si) RNA transfection. Histological examination was performed using Jenner-Giemsa and H&E staining techniques. Results: CK treatment attenuated ER stress markers, such as eIF2a phosphorylation and CHOP expression and impaired myotube formation in palmitate-treated C2C12 myotubes and skeletal muscle of mice fed on HFD. CK treatment augmented AMPK along with autophagy markers in skeletal muscle cells in vitro and in vivo experiments. AMPK siRNA or 3-MA, an autophagy inhibitor, abrogated the impacts of CK in C2C12 myotubes. CK treatment augmented p38 and Akt phosphorylation, leading to an enhancement of C2C12 myogenesis. However, AMPK siRNA abolished the effects of CK in C2C12 myoblasts. Conclusion: These findings denote that CK prevents lipid-induced skeletal muscle apoptosis via AMPK/autophagy-mediated attenuation of ER stress and induction of myoblast differentiation. Therefore, we may suggest the use of CK as a potential therapeutic approach for treating muscle-wasting conditions associated with obesity.

Synergistic antitumor activity of sorafenib and MG149 in hepatocellular carcinoma cells

  • Moon, Byul;Park, Mijin;Cho, Seung-Hyun;Kim, Kang Mo;Seo, Haeng Ran;Kim, Jeong-Hoon;Kim, Jung-Ae
    • BMB Reports
    • /
    • 제55권10호
    • /
    • pp.506-511
    • /
    • 2022
  • Advanced hepatocellular carcinoma (HCC) is among the most challenging cancers to overcome, and there is a need for better therapeutic strategies. Among the different cancer drugs that have been used in clinics, sorafenib is considered the standard first-line drug for advanced HCC. Here, to identify a chemical compound displaying a synergistic effect with sorafenib in HCC, we screened a focused chemical library and found that MG149, a histone acetyltransferase inhibitor targeting the MYST family, exhibited the most synergistic anticancer effect with sorafenib on HCC cells. The combination of sorafenib and MG149 exerted a synergistic anti-proliferation effect on HCC cells by inducing apoptotic cell death. We revealed that cotreatment with sorafenib and MG149 aggravated endoplasmic reticulum (ER) stress to promote the death of HCC cells rather than adaptive cell survival. In addition, combined treatment with sorafenib and MG149 significantly increased the intracellular levels of unfolded proteins and reactive oxygen species, which upregulated ER stress. Collectively, these results suggest that MG149 has the potential to improve the efficacy of sorafenib in advanced HCC via the upregulation of cytotoxic ER stress.

Korean Red Ginseng and Rb1 facilitate remyelination after cuprizone diet-induced demyelination

  • Oh Wook Kwon;Dalnim Kim;Eugene Koh;Hyun-Jeong Yang
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.319-328
    • /
    • 2023
  • Background: Demyelination has been observed in neurological disorders, motivating researchers to search for components for enhancing remyelination. Previously we found that Rb1, a major ginsenoside in Korean Red Ginseng (KRG), enhances myelin formation. However, it has not been studied whether Rb1 or KRG function in remyelination after demyelination in vivo. Methods: Mice were fed 0.2% cuprizone-containing chow for 5 weeks and returned to normal chow with daily oral injection of vehicle, KRG, or Rb1 for 3 weeks. Brain sections were stained with luxol fast blue (LFB) staining or immunohistochemistry. Primary oligodendrocyte or astrocyte cultures were subject to normal or stress condition with KRG or Rb1 treatment to measure gene expressions of myelin, endoplasmic reticulum (ER) stress, antioxidants and leukemia inhibitory factor (LIF). Results: Compared to the vehicle, KRG or Rb1 increased myelin levels at week 6.5 but not 8, when measured by the LFB+ or GST-pi+ area within the corpus callosum. The levels of oligodendrocyte precursor cells, astrocytes, and microglia were high at week 5, and reduced afterwards but not changed by KRG or Rb1. In primary oligodendrocyte cultures, KRG or Rb1 increased expression of myelin genes, ER stress markers, and antioxidants. Interestingly, under cuprizone treatment, elevated ER stress markers were counteracted by KRG or Rb1. Under rotenone treatment, reduced myelin gene expressions were recovered by Rb1. In primary astrocyte cultures, KRG or Rb1 decreased LIF expression. Conclusion: KRG and Rb1 may improve myelin regeneration during the remyelination phase in vivo, potentially by directly promoting myelin gene expression.

렙틴 저항성의 개선 (Improvement of Leptin Resistance)

  • 김용운
    • Journal of Yeungnam Medical Science
    • /
    • 제30권1호
    • /
    • pp.4-9
    • /
    • 2013
  • Leptin, a 16-kDa cytokine, is secreted by adipose tissue in response to the surplus of fat store. Thereby, the brain is informed about the body's energy status. In the hypothalamus, leptin triggers specific neuronal subpopulations (e.g., POMC and NPY neurons) and activates several intracellular signaling events, including the JAK/STAT, MAPK, PI3K, and mTOR pathway, which eventually translates into decreased food intake and increased energy expenditure. Leptin signal is inhibited by a feedback inhibitory pathway mediated by SOCS3. PTP1B involves another inhibitory pathway of leptin. Leptin potently promotes fat mass loss and body weight reduction in lean subjects. However, it is not widely used in the clinical field because of leptin resistance, which is a common feature of obesity characterized by hyperleptinemia and the failure of exogenous leptin administration to provide therapeutic benefit in rodents and humans. The potential mechanisms of leptin resistance include the following: 1) increases in circulating leptin-binding proteins, 2) reduced transport of leptin across the blood-brain barrier, 3) decreased leptin receptor-B (LRB), and/or 4) the provocation of processes that diminish cellular leptin signaling (inflammation, endoplasmic reticulum stress, feedback inhibition, etc.). Thus, interference of the cellular mechanisms that attenuate leptin signaling improves leptin action in cells and animal models, suggesting the potential utility of these processes as points of therapeutic intervention. Various experimental trials and compounds that improve leptin resistance are introduced in this paper.

Upregulation of Kruppel-like Factor 4 Gene expression by Allomyrina dichotoma Hemolymph in the INS-1 Pancreatic β-cells

  • Kwon, Kisang;Suh, Hyun-Woo;Kim, Hong Geun;Kwon, O-Yu
    • 대한의생명과학회지
    • /
    • 제26권1호
    • /
    • pp.37-41
    • /
    • 2020
  • The hemolymph of Korean rhinoceros Allomyrina dichotoma consists of blood and lymph in which various kinds of proteins function physiologically. We have previously demonstrated that A. dichotoma hemolymph has the potential to treatment and prevent diabetes through activating transcription factor 3-gene (ATF3) regulation. In this study, we investigate the expression of Kruppel-like factor 4 (KLF4) in A. dichotoma hemolymph-treated INS-1 pancreatic β-cells. The new findings show that A. dichotoma hemolymph, which upregulates KLF4 gene expression in a dose-dependent and time-dependent manner. In addition, hemolymph combine with mild endoplasmic reticulum (ER) stress, which also differentially regulates KLF4 gene expression. These results may provide insights to KLF4 gene-related disease therapies through KLF4 gene regulation.