• Title/Summary/Keyword: Endometrial epithelial cells

Search Result 49, Processing Time 0.027 seconds

Identification of a High-yield Technique for Isolating Endometrial Epithelial Cells from the Mouse Uterus : A Comparison of Mechanical and Sedimentation-adherence Methods

  • Sohn, Jie Ohn;Jo, Yoon Mi;Park, Hye Jin;Ahn, Ji Yeon;Song, Hyun Jin;Lim, Jeong Mook;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • An in vitro assay following culture of endometrial epithelial cells is essential for understanding epithelial cell function in reproduction. Several diverse techniques have been developed for isolating endometrial epithelial cells, although an optimal technique has not been identified. In this study, we describe a sedimentation-adherence (S-A) isolation technique with a high-yield cell-separating ability to isolate endometrial epithelial cells from 8-week-old female C57BL/6 mice. We analyzed total cell number, viability, morphology, and expression of cytokeratin 18 as an endometrial epithelial cell-specific marker in cells isolated using a mechanical method compared to the S-A technique. There were no significant differences in the total number, viability, or morphology of the putative endometrial epithelial cells with either method. In contrast, significantly more endometrial epithelial cells harvested using the S-A method were positively stained for cytokeratin 18 than those isolated using the mechanical method. These results confirm that the S-A method is more efficient for retrieving endometrial epithelial cells than a mechanical method.

Effects of Keratinocyte Growth Factor on the Uterine Endometrial Epithelial Cells in Pigs

  • Ka, Hak-Hyun;Bazer, Fuller W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1708-1714
    • /
    • 2005
  • Keratinocyte growth factor (KGF) functions in epithelial growth and differentiation in many tissues and organs. KGF is expressed in the uterine endometrial epithelial cells during the estrous cycle and pregnancy in pigs, and receptors for KGF (KGFR) are expressed by conceptus trophectoderm and endometrial epithelia. KGF has been shown to stimulate the proliferation and differentiation of conceptus trophectoderm. However, the role of KGF on the endometrial epithelial cells has not been determined. Therefore, this study determined the effect of KGF on proliferation and differentiation of endometrial epithelial cells in vitro and in vivo using an immortalized porcine luminal epithelial (pLE) cell line and KGF infusion into the uterine lumen of pigs between Days 9 and 12 of estrous cycle. Results showed that KGF did not stimulate proliferation of uterine endometrial epithelial cells in vitro and in vivo determined by the $^3$H]thymidine incorporation assay and the proliferating cell nuclear antigen staining, respectively. Effects of KGF on expression of several markers for epithelial cell differentiation, including integrin receptor subunits $\alpha$4, $\alpha$5 and $\beta$1, plasmin/trypsin inhibitor, uteroferrin and retinol-binding protein were determined by RT-PCR, Northern and slot blot analyses, and immunohistochemisty, and KGF did not affect epithelial cell differentiation in vitro and in vivo. These results show that KGF does not induce epithelial cell proliferation and differentiation, suggesting that KGF produced by endometrial epithelial cells acts on conceptus trophectoderm in a paracrine manner rather than on endometrial epithelial cells in an autocrine manner.

3-Dimensional Culture System of Endometrial Cells for Studying the Human Implantation Mechanism (인간의 착상 기전을 연구하기 위한 3차원적 자궁내막 모델 확립)

  • Park, Dong-Wook;Yang, Hyun-Won;Kwon, Hyuck-Chan;Chang, Ki-Hong;Kim, Sei-Kwang;Cho, Dong-Jae;Oh, Kie-Suk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In order to study the implantation mechanism various methods for culture of endometrial cells in vitro have been attempted. However, a disadvantage is that primary cultures of stromal and epithelial cells do not have the ability to differentiate, and therefore cannot be reproduced in the same manner as in vivo endometrium. The object of this study is to establish a three dimensional culture of endometrial cells which are both morphologically and functionally identical to in vivo endometrium. Endometrial tissues obtained after hysterectomies were cut into thin slices and treated with collagenase and trypsin-EDTA. The stromal cells and the epithelial cells were separated by centrifugation and cultured for 24 hours in DMEM media containing 10% FCS, 100 nM progesterone, and 1 nM estradiol. The cultured stromal cells were mixed with collagen gel and solidified, after which it was covered with matrigel. Epithelial cells were inoculated on the top and then cultured for 3 days. The three dimensionally cultured endometrial cells were stained for integrin ${\alpha}1,\;{\alpha}4,\;{\beta}3$, and cyclooxygenase-l, -2 by immunohistochemistry, which all showed strong expression. The cultured epithelial cells showed the formation of microvilli, tight junctions and pinopodes by electron microscopy. Studies are currently under way utilizing this three dimensional culture model to ascertain the interaction between the embryo and human endometrial cells at the time of implantation, and it is thought that further studies into a new culture environment which would allow longer periods of culture will be necessary.

  • PDF

Characterization and Immortalization of Normal Human Endometrial Cells

  • Hong, In-Sun;Kim, Seok-Hyun;Kung, Mi-Kyung;Jun, Jin-Hyun;Lee, Yong-Soon;Kang, Kyung-Sun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.122-122
    • /
    • 2003
  • Endometrial tissue is an interesting model for intrinsic and extrinsic factors, ie hormones and growth factors, involved in its normal pathologic development and its cyclic growth. The endometrial cells were isolated from endometrial tissue of the proliferative phase obtained by hysterectomy and separated stromal and epithelial cells.(omitted)

  • PDF

Studies on the Effects of Co-Culture with Cumulus Cells, Oviduct Epithelial Cells and Uterine Endometrial Cells on in-vitro Fertilization and Cleavage Rate of Porcine Oocytes (난구, 난관 상피세포 및 자궁 내막세포와의 공동배양이 돼지 난포란의 체외수정 및 분할율에 미치는 영향에 관한 연구)

  • 김상근;김명헌;이무강;이규승
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.2
    • /
    • pp.133-139
    • /
    • 1993
  • The studies were carried out to investigate the effects of co-culture with cumulus cell, oviduct epithelial cells and uterine endometrial cells on the in-vitro fertilization and cleavage rate of porcine follicular oocytes. The ovaries were obtained from slaughtered swine. The follicular oocytes surrounded with cumulus cells were recovered by aspirating follicular fluids from the visible follicles of diameter 3~5 mm. The follicular oocytes were cultured in TCM-199 medium containing hormones and 10% FCS for 24~48 hrs in a incubator with 5% CO2 in air at 38.5$^{\circ}C$ and then matured oocytes were again cultured for 12~18 hrs with motile capacitated sperm by preincubation. The results obtained in these experiments were summarized as follows : 1. The in-vitro maturation and fertilization rate of porcine oocytes co-cultured with cumulus cells in TCM-199 meidum were 64.6%~74.5% and 37.5%~55.3%, respectively. And in-vitro fertilization rate of cumulus-enclosed oocytes(51.5%) were significantly(p<0.05) higher than cumulus-denuded oocytes(21.7%). 2. The in-vitro maturation and fertilization rate of porcine oocytes co-cultured with 1$\times$104 cells/ml, 1$\times$106 cells/ml, 1$\times$108 cells/ml and 1$\times$1015 cells/ml oviduct epithelial cells in TCM-199 medium were 53.5% and 37.2%, 61.7% and 46.8%, 54.5% and 31.8%, 42.2% and 26.7%, respectively. 3. The in-vintro maturation and fertilization rate of porcine oocytes co-cultured with 1$\times$106/ml, 1$\times$108/ml, 1$\times$1015/ml uterine endometrial cells in TCM-199 medium were 54.3% and 39.1%, 58.3% and 43.8%, 55.5% and 33.3%, and 45.7% and 30.4%, respectively. 4. When the in-vitro fertilized oocytes were co-cultured with porcine cumulus cells, ovdiduct epithelial cells and uterine endometrial cells, the development rate to the blastocyst stage was 9.5%, 10.7% and 11.8%, respectively and the rates were higher than that of control, 2.1%(p<0.05).

  • PDF

Analysis of Plasminogen Activators Activity and Three Dimensional (3D) Culture of Endometrial Cells in Pigs (돼지 자궁내막 세포의 3차원 배양과 Plasminogen Activator 활성화 분석)

  • Cha, Hye-Jin;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.273-280
    • /
    • 2013
  • The aim of this study was to establish a three dimensional (3D) culture system of endometrial cells and to examine the plasminogen activators (PAs) activity in porcine uterine. The 3D culture system in porcine endometrial cells was composed to mixture 3D gel, stromal cells and epithelial cells. The 3D culture system was used to identify normal structure search as uterine tissue and PAs expression in this study. In results, porcine endometrium epithelial cells forming a top monolayer and endometrium stromal cells developed as fibroblast-like within 3D matrix scaffold. Expression of urokinase-type PA (uPA) and tissue-type PA (tPA) were observed during the 3D culture using immunofluorescence. PA activity in 3D-cultured endometrial cells was no significant difference between the tissue type, but 2D culture system were significantly lower than in 3D-cultured endometrial cells (P<0.05). Therefore, basic system and functional aspect of 3D culture could be established with similar system of endometrium tissue. We suggest that this study was assumed applicable as baseline data to investigate mechanism between porcine uterus cells in vitro.

Unique epithelial expression of S100A calcium binding protein A7A in the endometrium at conceptus implantation in pigs

  • Lee, Soohyung;Jang, Hwanhee;Yoo, Inkyu;Han, Jisoo;Jung, Wonchul;Ka, Hakhyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1355-1362
    • /
    • 2019
  • Objective: S100A7A, a member of the S100 protein family, is involved in various biological processes, including innate immunity, antimicrobial function, and epithelial tumorigenesis. However, the expression and function of S100A7A in the endometrium during the estrous cycle and pregnancy are not well understood in pigs. Therefore, this study determined the expression and regulation of S100A7A at the maternal-conceptus interface in pigs. Methods: We obtained endometrial tissues from pigs throughout the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during midto late pregnancy and analyzed the expression of S100A7A in these tissues. We also determined the effects of steroid hormones, estradiol-$17{\beta}$ ($E_2$) and progesterone, and interleukin-$1{\beta}$ (IL1B) on S100A7A expression in endometrial tissues. Results: We found that S100A7A was expressed in the endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-dependent manner and was localized to endometrial luminal epithelial (LE) and superficial glandular epithelial cells with strong intensity in LE cells on day 12 of pregnancy. Early stage conceptuses and chorioallantoic tissues from day 30 to term pregnancy also expressed S100A7A. The expression of S100A7A was increased by $E_2$ and IL1B in endometrial tissues. Conclusion: S100A7A was expressed at the maternal-conceptus interface at the initiation of implantation in response to conceptus-derived estrogen and IL1B and could be a unique endometrial epithelial marker for conceptus implantation in pigs. These findings provide an important insight into the understanding of conceptus-endometrial interactions for the successful establishment of pregnancy in pigs.

Transforming Growth Factor-$\beta$ is a Possible Paracrine Mediator in the Human Endometrial Decidualization (인간자궁내막의 탈락막화 (Decudualization)에 있어서 TGF-$\beta$ (Transforming Growth Factor-$\beta$)의 역할)

  • Park, Dong-Wook;Choi, Dong-Soon;Kim, Mi-Ran;Hwang, Kyung-Joo;Jo, Mi-Yeong;Ahn, Seong-Hee;Min, Churl-K.;Ryu, Hee-Sug
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.65-75
    • /
    • 2003
  • Objectives: To investigate the role of TGF (Transforming growth factor-$\beta$) involved in the paracrinic communication during decidualization between UEC (uterine epithelial cells) and USC (uterine stromal cells), we have employed a co-culture system composed of human endometrial epithelial and stromal cells in defined hormonal conditions. Design: In the co-culture, endometrial epithelial cells cultured in the matrigel-coated cell culture insert are seeded on top of the endometrial stromal cells cultured within a collagen gel. The co-culture was maintained for 48 hours under the following hormonal conditions: progesterone dominant condition (100 nM P4 and 1 nM E2) or estrogen-dominant condition (100 nM E2 and 1 nM P4). 10 ng/ ml HGF and/or 10 ng/ml TGF-$\beta$1 are added. Methods: RT-PCR is utilized to detect mRNAs quantitatively. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining are utilized to detect proteins in the tissue. Results: Prolactin mRNA is expressed in the co-cultured stromal cells under the progesterone dominant condition. TGF-$\beta$1 and its receptors are expressed in both the co-cultured epithelial and stromal cells irrespective of the steroid present, which is in contrast with no or negligible expression of TGF-$\beta$1 or its receptor in cells separately cultured. Both estrogen and progesterone significantly elevate the concentration of hepatocyte growth factor (HGF) in the conditioned medium of the co-culture with the value of 4, 325 pg/ml in E2-dominant and 2, 000 pg/ml in P4-dominant condition compare to 150 pg/ml in no hormone. In separately cultured stromal cells, administration of HGF induces the expression of TGF receptor 1 in both hormonal conditions, but induction of TGF receptor 2 is only manifest in the P4-dominant condition. Administration of TGF-$\beta$ and HGF directly induce the decidualization marker prolactin mRNA in separately cultured stromal cells. Conclusion: It is likely that steroid hormones induces prolactin mRNA indirectly by promoting the cell to cell communication between the stromal and the epithelial cells. TGF-$\beta$ and HGF are two possible paracrine mediators in the human endometrial decidualization.

Detrimental effects of lipopolysaccharide on the attachment and outgrowth of various trophoblastic spheroids on human endometrial epithelial cells

  • Kim, Wontae;Choi, Jungwon;Yoon, Hyejin;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.132-141
    • /
    • 2021
  • Objective: Lipopolysaccharide (LPS) from Gram-negative bacteria causes poor uterine receptivity by inducing excessive inflammation at the maternal-fetal interface. This study aimed to investigate the detrimental effects of LPS on the attachment and outgrowth of various types of trophoblastic spheroids on endometrial epithelial cells (ECC-1 cells) in an in vitro model of implantation. Methods: Three types of spheroids with JAr, JEG-3, and JAr mixed JEG-3 (JmJ) cells were used to evaluate the effect of LPS on early implantation events. ECC-1 cells were treated with LPS to mimic endometrial infection, and the expression of inflammatory cytokines and adhesion molecules was analyzed by quantitative real-time polymerase chain reaction and western blotting. The attachment rates and outgrowth areas were evaluated in the various trophoblastic spheroids and ECC-1 cells treated with LPS. Results: LPS treatment significantly increased the mRNA expression of inflammatory cytokines (CXCL1, IL-8, and IL-33) and decreased the protein expression of adhesion molecules (ITGβ3 and ITGβ5) in ECC-1 cells. The attachment rates of JAr and JmJ spheroids on ECC-1 cells significantly decreased after treating the ECC-1 cells with 1 and 10 ㎍/mL LPS. In the outgrowth assay, JAr spheroids did not show any outgrowth areas. However, the outgrowth areas of JEG-3 spheroids were similar regardless of LPS treatment. LPS treatment of JmJ spheroids significantly decreased the outgrowth area after 72 hours of coincubation. Conclusion: An in vitro implantation model using novel JmJ spheroids was established, and the inhibitory effects of LPS on ECC-1 endometrial epithelial cells were confirmed in the early implantation process.

Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression

  • Choi, Hee-Jung;Park, Mi-Ju;Kim, Bo-Sung;Choi, Hee-Jin;Joo, Bosun;Lee, Kyu Sup;Choi, Jung-Hye;Chung, Tae-Wook;Ha, Ki-Tae
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.429-434
    • /
    • 2017
  • Endometriosis is the abnormal growth of endometrial cells outside the uterus, causing pelvic pain and infertility. Furthermore, adhesion of endometrial tissue fragments to pelvic mesothelium is required for the initial step of endometriosis formation outside uterus. $TGF-{\beta}1$ and adhesion molecules importantly function for adhesion of endometrial tissue fragments to mesothelium outside uterus. However, the function of $TGF-{\beta}1$ on the regulation of adhesion molecule expression for adhesion of endometrial tissue fragments to mesothelium has not been fully elucidated. Interestingly, transforming growth factor ${\beta}1$ ($TGF-{\beta}1$) expression was higher in endometriotic epithelial cells than in normal endometrial cells. The adhesion efficiency of endometriotic epithelial cells to mesothelial cells was also higher than that of normal endometrial cells. Moreover, $TGF-{\beta}1$ directly induced the adhesion of endometrial cells to mesothelial cells through the regulation of integrin of ${\alpha}V$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ via the activation of the $TGF-{\beta}1/TGF-{\beta}RI/Smad2$ signaling pathway. Conversely, the adhesion of $TGF-{\beta}1-stimulated$ endometrial cells to mesothelial cells was clearly reduced following treatment with neutralizing antibodies against specific $TGF-{\beta}1-mediated$ integrins ${\alpha}V$, ${\beta}1$, and ${\beta}4$ on the endometrial cell membrane. Taken together, these results suggest that $TGF-{\beta}1$ may act to promote the initiation of endometriosis by enhancing integrin-mediated cell-cell adhesion.