• Title/Summary/Keyword: Endolysin

Search Result 12, Processing Time 0.018 seconds

Shotgun Phage Display of Lactobacillus casei BL23 Against Collagen and Fibronectin

  • Munoz-Provencio, Diego;Monedero, Vicente
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.197-203
    • /
    • 2011
  • Lactobacilli are normal constituents of the intestinal microbiota, and some strains show the capacity to bind to extracellular matrix proteins and components of the mucosal layer, which represents an adaptation to persist in this niche. A shotgun phage-display library of Lactobacillus casei BL23 was constructed and screened for peptides able to bind to fibronectin and collagen. Clones showing binding to these proteins were isolated, which encoded overlapping fragments of a putative transcriptional regulator (LCABL_29260), a hypothetical protein exclusively found in the L. casei/rhamnosus group (LCABL_01820), and a putative phage-related endolysin (LCABL_13470). The construction of different glutathione S-transferase (GST) fusions confirmed the binding activity and demonstrated that the three identified proteins could interact with fibronectin, fibrinogen, and collagen. The results illustrate the utility of phage display for the isolation of putative adhesins in lactobacilli. However, it remains to be determined whether the primary function of these proteins actually is adhesion to mucosal surfaces.

Research Progress on Strategies for Improving the Enzyme Properties of Bacteriophage Endolysins

  • Yulu Wang;Xue Wang;Xin Liu;Bokun Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1189-1196
    • /
    • 2024
  • Bacterial resistance to commonly used antibiotics is one of the major challenges to be solved today. Bacteriophage endolysins (Lysins) have become a hot research topic as a new class of antibacterial agents. They have promising applications in bacterial infection prevention and control in multiple fields, such as livestock and poultry farming, food safety, clinical medicine and pathogen detection. However, many phage endolysins display low bactericidal activities, short half-life and narrow lytic spectrums. Therefore, some methods have been used to improve the enzyme properties (bactericidal activity, lysis spectrum, stability and targeting the substrate, etc) of bacteriophage endolysins, including deletion or addition of domains, DNA mutagenesis, chimerization of domains, fusion to the membrane-penetrating peptides, fusion with domains targeting outer membrane transport systems, encapsulation, the usage of outer membrane permeabilizers. In this review, research progress on the strategies for improving their enzyme properties are systematically presented, with a view to provide references for the development of lysins with excellent performances.