• Title/Summary/Keyword: Endogenous substrates

Search Result 23, Processing Time 0.02 seconds

Evidence for Regulation of Interaction of Endogenous Protein Kinase C(Pkc) Substrates with Plasma Membrane by PKC Down-Regulation in K562 Cells

  • Kim, Young-Sook
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.301-307
    • /
    • 1995
  • In the particulate fraction obtained from PKC-down regulated K562 cells by treatment for 24 h with 200nM TPA, phosphorylation of two proteins with molecular weight, 100 kDa and 23 kDa (designated p100 and p23, respectvely) was depleted and addition of exogenous purified PKC to this fraction failed to testore their phosphorylation. However, in the soluble fraction, all of phosphoproteins abolished by long-term treatment with TPA were restored by exogenously added PKC. Phosphorylation of two proteins was increased by short-term tretment (20 min), and diminished with the persistant exposure to TPA as well as at a concentration as low as 1nM. When K562 cells were treated with 1 nM and 200 nM TPA for 24 h, phosphorylation of p100 was restored with or without exogenous PKC on 2-3day and 6day after removal of treated TPA, respectively. Two-dimensional electrophoresis of phosphoproteins revealed that phosphorylated p100 (pl=5.9) and p66 species were completely absent from the particulate fraction of K562 cells treated with 200nM TPA for 24 h. These results suggest that the interaction of sensitive endogenous substrates, p100 and p23 with the plasma membrane might be regulated by PKC-down regulation without displacement to the cytosol and the interaction of p100 with the membrane might be reveersible.

  • PDF

Substrate Specificity of Alkaline Phosphatase (Alkaline phosphatase의 기질 특이성)

  • ;;E. Waelkens;W. Merlevede
    • YAKHAK HOEJI
    • /
    • v.37 no.6
    • /
    • pp.571-576
    • /
    • 1993
  • The substrate specificity of the purified rabbit plasma alkaline phosphatase (ALPase) was determined towards a extended range of potential substrates including relatively simple phosphate derivatives as p-NPP and indolyl phosphate, and several synthetic peptides and phosphoproteins. These results further estabilish the broad substrate specificity of these circulating enzymes. Interestingly, the plasma ALPase preferentially dephosphorylates Thr over Ser residues, as demonstrated with a series of synthetic peptides. The latter result is in contradiction to the behaviour of the tissue ALPase, which is thought to the ultimate source of plasma ALPase, and open therefore new perspectives with respective to the origin and "solubilisation" processes of these enzymes. Dephsphrylation of protein substrates by endogenous and isolated plasma ALPases indicates that ALPase probably displays protein phosphatase activity in vivo.

  • PDF

SOME PHYSIOLOGICAL STUDIES ON THE UTILIZATION OF ORGANIC SUBSTRATES BY EUGLENA GRACILIS VAR. BACILLA 10616 IN LIGHT AND IN DARKNESS ("유-그레나"의 명암배양에 따르는 유기질의 이용과 호흡 및 생장에 대하여)

  • Lee, Min-Jai
    • Journal of Plant Biology
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 1959
  • 1) The comparative studies of the quantitative measurement of growth characteristics and utilization of substrates by Euglena gracilis var. bacilla 10616 in the light and in darkness have been carried out. Eodogenous respiration, effect of respiratory inhibitors and responses to the added substrates for the exogenous respiration are also investigated. 2) All cultures are grown in the open air under the continuous illumination of fluorescent light of 3500 lux at room termperature, the growth rate of the culture in the basal medium added 0.5% lactate is found to be the highest. The growth rate decreases successively for the cultures of 0.5% sucinate, 0.5% Na-acetate, 0.5% malate, and control. There is no growth in the basal meidum added 0.5% butyrate and 0.5% hydroquinone. The similar results are obtained for the mentioned cultures in the darkness. However, the growth rate in basal medium added 0.5% glucose and 0.5% sucrose does seem to increase in the darkness unlike the illumination. 3) The endogenous rate of respiration for the organism cultured photosynthetically is about 12.94ul 02/mg/hr, in basal medium and the respiratory quotient is about 0.84. The rate is decreased by starvations to 6.5ul 02/mg/hr, about to a half, but the respiratory quotient does net change. 4) The oxygen consomption during initial 2 hours in suspending solution ranging from pH 4.5 to pH 9.3 is highest at pH 4.5 in which the algae had grown, at pH 5.5 and at pH 6.9. 5) Endogenous respiration of the cells is strongly inhibited by 0.1M of potassium cyanide, malomic acid, sodium fluoride and iodo-acetic acid. It is also strongly inhibited by 0.01M of potassium cyanide. 6) The respiratory response to added substrates for the exogenous respiration in the organism is coincided with the rate in the basal medium added the substrate in light and in darkness, whether the cells are fed or starved. 7) According to the results of this study, there seems to be the flexibility of the interconversion between photosynthesis and chemosynthesis, heterotropic mode of metabolism, in Euglena gracilis var. bacillaris, and that this organism utilizes the lactate most. It also may be suggested that the enayme systems linked in the each steps of Embden-Myerhof-Parnas path way and TCA cycle seem to exist in this organism.

  • PDF

Effect of Lidocaine on Utilization of Endogenous Substrates for Contractile Process of Isolated Rat Atria (심근 수축에 쓰여지는 내인성 기질 대사에 대한 Lidocaine의 영향)

  • Ko Kye-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.53-61
    • /
    • 1995
  • The experiments were performed to determine whether the cardiac depressant action of lidocaine is directly associated with the utilization of endogenous substrates in isolated rat atria, by using citrate and bicarbonate-free medium known as potent inhibitors of phosphofructokinases (PFK) enzyme step. Citrate and bicarbonate-free medium produced negative inotropic action of isolated rat atria incubated in normal Krebs-Ringer bicarbonate glucose medium. Pyruvate and acetate increased the force of contraction of atria depressed by citrate or bicarbonate-free medium, whereas fructose was without effect indicating the inhibitory effect of citrate and bicarbonate-free medium at some point in the glycolytic pathway such as the PFK step in atria. In the absence of exogenous substrate, citrate and bicarbonate-free medium produced a marked depression of the force of substrate-depleted atria indicating that utilization of endogenous substrate above the PFK step, probably cardiac glycogen, is also impaired by citrate or bicarbonate-free medium. Lidocaine produced further depression of the contractile force of atria depressed by citrate. These results argue strongly for an additional mechanism of cardiac depression caused by lidocaine involving the sites below the PFK.

  • PDF

Effect of Starvation on Substrate Utilization of Isolated Rat Atria (적출심장의 대사기질 이용에 대한 내인성 기질의 영향에 관한 연구)

  • Ko, Kye-Chang;Chung, Joo-Ho;Jung, Jee-Chang;Sim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • The abilities of metabolic substrates, glucose, pyruvate, and acetate to produce a maximal increase in the force of contraction of substrate-depleted atria from fed rats were compared to those from starved rats, in order to observe the effect of starvation on substrate utilization of the myocardium. Starvation results in a marked loss of body weight in rats. In contrast to the starved rats, the body weight of fed rats increased with time. When placed in substrate-free medium, atria from fed rats showed marked decline in contractile force. In contrast to the atria from fed rats, the substrate-depleted atria from starved rats showed much less decline of the force of contraction. In the substrate-free medium, abilities of glucose, pyruvate, and acetate to produce a maximal increase in the force of contraction of atria from fed rats were much greater than those from starved rats. The data from these studies indicate that in the substrate-free medium atria from starved rats utilize much less exogenous substrates than those from fed rats. These results suggest that starvation has no deleterious effect on contractile activity of the myocardium, and the starvation increase the storage of readily metabolizable endogenous substrstes useful for the functional activity of the isolated heart.

  • PDF

Activation of Signal Transduction Pathways Changes Protein Phosphorylation Patterns in the Rat Hvpothalamus (흰쥐 시상하부에서 신호전달계의 활성화에 의한 단백질 인산화의 변화)

  • Lee, Byung-Ju;Sun
    • The Korean Journal of Zoology
    • /
    • v.37 no.1
    • /
    • pp.130-136
    • /
    • 1994
  • Although alteration in protein phosphorylation by specific protein kinases is of importance in transducing cellular signals in a variety of neural/endocrine systems, little is known about protein phosphorylation in the hvpothalamus. The present study aims to explore whether activation of the second messenger-dependent protein kinases affects phosphorylation of specific proteins using a cell free phosphorylation system followed by SDS-polvacrylamide gel electrophoresis. Cytoplasmic fractions derived from hvpothalami of immature rats were used as substrates and several activators and/or inhibitors of CAMP-, phosphatidylinositol- and Ca2+-calmodulin-dependent protein kinases were assessed. Many endogenous proteins were extensively phosphorylated and depending on the signal transduction pathways, phosphorvlation profiles were markedly different. The present data indicate that extracellular signals may affect cellular events through protein phosphorylation by second messengers-protein kinases in the rat hypothalamus.

  • PDF

Expression of CYP1A1 and GSTP1 in Human Brain Tumor Tissues in Pakistan

  • Wahid, Mussarat;Mahjabeen, Ishrat;Baig, Ruqia Mehmood;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7187-7191
    • /
    • 2013
  • Most of the exogenous and endogenous chemical compounds are metabolized by enzymes of xenobiotic processing pathways, including the phase I cytochrome p450 species. Carcinogens and their metabolites are generally detoxified by phase II enzymes like glutathione-S-transferases (GST). The balance of enzymes determines whether metabolic activation of pro-carcinogens or inactivation of carcinogens occurs. Under certain conditions, deregulated expression of xenobiotic enzymes may also convert endogenous substrates to metabolites that can facilitate DNA adduct formation and ultimately lead to cancer development. In this study, we aimed to test the association between deregulation of metabolizing genes and brain tumorigenesis. The expression profile of metabolizing genes CYP1A1 and GSTP1 was therefore studied in a cohort of 36 brain tumor patients and controls using Western blotting. In a second part of the study we analyzed protein expression of GSTs in the same study cohort by ELISA. CYP1A1 expression was found to be significantly high (p<0.001) in brain tumor as compared to the normal tissues, with ~4 fold (OR=4, 95%CI=0.43-37) increase in some cases. In contrast, the expression of GSTP1 was found to be significantly low in brain tumor tissues as compared to the controls (p<0.02). This down regulation was significantly higher (OR=0.05, 95%CI=0.006-0.51; p<0.007) in certain grades of lesions. Furthermore, GSTs levels were significantly down-regulated (p<0.014) in brain tumor patients compared to controls. Statistically significant decrease in GST levels was observed in the more advanced lesions (III-IV, p<0.005) as compared to the early tissue grades (I-II). Thus, altered expression of these xenobiotic metabolizing genes may be involved in brain tumor development in Pakistani population. Investigation of expression of these genes may provide information not only for the prediction of individual cancer risk but also for the prevention of cancer.

Changes in Hemolymph Protein Concentration and Oxygen Consumption during the Metamorphosis in pieris rapae L. (배추흰나비의 變態에 따른 血蛋白質과 酸素消費量의 變化)

  • Kim, Chang-Whan;Lee, Kyung-Ro;Kim, Hak-Ryul
    • The Korean Journal of Zoology
    • /
    • v.12 no.2
    • /
    • pp.60-66
    • /
    • 1969
  • Changes in the protein concentration in the hemolymph and the oxidation of respiratory substrates at various developmental stages in cabbage worm, Pieris rapae Linne were measured using Biuret method and Warburg manometric method, respectively. The results are summarized as follows: 1. The hemolymph protein contentration decreased gradually until the six-day pupa and increased thereafter. In the fifth larval instar the concentration reached a maximum and was about two times the value for the six-day pupa. 2. Endogenous respiration was very high at the prepupal stage, decreasing at two-day pupa, followed by an increase at the late pupal stage. 3. Glucose showed the marked activity throughout the whole stages, and had the striking influence on both the prepupal and adult stages. 4. The changes in protein concentration and the rate of oxygen consumption exhibited a general pattern of U-shaped curve through the process of life cycle according to histogenesis of the adult organ and histolysis of the larval organ.

  • PDF

Neural Substrates and Functional Hypothesis of Acupuncture Mechanisms - Neural substrates and humoral-, neural-, and immune-responses related to acupuncture stimulation- (침의 치료기전에 대한 신경기반 및 신경기능 가설 -침자극과 관계된 신경기반 및 체액성 반응, 신경적 반응, 면역반응-)

  • Cho, Z.H;Hwang, S.C;Wong, E.K.;Son, Y.D;Kang, C.K;Park, T.S;Bai, S.J;Sung, K.K
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.172-186
    • /
    • 2003
  • Acupuncture therapy has demonstrated efficacy in several clinical areas, and of these areas the understanding of pain has progressed immensely in the last two decades. The underlying mechanisms of acupuncture in general and the analgesic effect in particular are still not clearly delineated. The leading hypothesis include the effects of local stimulation, neuronal gating, release of endogenous opiates, and the placebo effect. Accumulating evidence suggests that the central nervous system(CNS) is essential for the processing of these effects, via its modulation of the autonomic nervous system, neuro-immune system, and hormonal regulation. These processes tap into basic survival mechanisms. As such, understanding the effects of acupuncture within a neuroscience-based framework becomes vital. We propose a model which incorporates the stress-induced hypothalamus-pituitary-adrenal axis(HPA-axis) model of Akil et al., the cholinergic anti-inflamatory observations of Tracey et al., and Petrovic et al.

  • PDF

Evidence for Existence of a Water-Extractable Anticoagulant in an Earthworm, Lumbricus rubellus

  • Woo, Jeong-Im;Bahk, Yun-Kyung;Yu, Kyoung-Hee;Paik, Seung-R.;Chang, Chung-Soon
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.500-506
    • /
    • 1996
  • We have isolated a water-extracted novel regulator for blood coagulation from an earthworm, Lumbricus rubellus. As a folk remedy, the earthworm has been known to facilitate blood circulation. After complete heat inactivation of endogenous proteases in the earthworm, an anticoagulant(s) was purified through ammonium sulfate fractionation and three consecutive gel permeation chromatography of Sephacryl S-300, Sephadex G-75, and G-150 by measuring activated partial thromboplastin time (APTT) The anticoagulant was further purified to 2,800 fold with a C4 reversed-phase HPLC This activity was stable under heat ($100^{\circ}C$ for 30 min) and acidic conditions (0.4 N HCl). The effects of this partially purified anticoagulant on thrombin were observed with various substrates such as N${\alpha}$-benzoyl-DL-arginine-p-nitroanilide (BApNA), H-D-phenylalanyl-L-pipecoyl-L-arginine-p-nitroanilide (S-2238), N${\alpha}$-p-tosyl-L-arginine methyl ester (TAME), and fibrinogen as a natural substrate. Only TAME hydrolysis, due to an esterase activity of the enzyme, was inhibited among the chromogenic substrates. In addition, the anticoagulant not only inhibited the conversion of fibrinogen to fibrin but also prolonged the fibrin clot formation monitored with the in vitro coagulation test. Based on these observations, we suggest the significance of measuring the ability of antithrombotic drugs to inhibit the esterase activity of thrombin. In this report, it was also shown that the earthworm indeed contained a water-extractable, heat- and acid-stable anticoagulant which could be used as a novel antithrombotic agent.

  • PDF