• Title/Summary/Keyword: Endocrine disrupting chemical

Search Result 92, Processing Time 0.018 seconds

Environmental Pollutants in Streams of Andong District and Insect Immune Biomarker (안동지역 하천의 환경오염물질과 곤충면역 생체지표 분석)

  • Ryoo Keon Sang;Ko Seong-Oon;Cho Sunghwan;Lee Hwasung;Kim Yonggyun
    • Korean journal of applied entomology
    • /
    • v.44 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • Samples of water, soil, and sediment were taken from 10 streams near Andong, Korea in May 2004. To assess the degree of environmental pollution of each stream, chemical pollutants such as total notrogen (T-N), total phosphorus (T-P), chemical oxygen demand (COD), heavy metals, organophosphorus pesticides, organochlorine pesticides, and dioxin-like PCB congeners were analyzed by standard process tests or U.S. EPA methods. In addition, biomarkers originated from insect immune systems of beet armyworm, Spodoptera exigua, were used to analysis of the environmental samples. Except Waya-chun stream showing T-N content of 9.12 mg/L, most streams were contaminated with relatively low levels of overall pollutants in terms of T-N, T-P, and COD, compared to their acceptable environmental levels designated by the Ministry of Environment. Contents of Pb and Cd in samples of each stream were much lower than environmentally permissible levels. However, several times higherconcentrations of Pb and Cd were found in locations at Mi-chun, Kilan-chun, and Hyunha-chun streams, in comparison with other streams. Diazinon, parathion, and phenthoate compounds among organophosphorus pesticides were detected as concentrations of 0.19, 0.40, and $1.13\;{\mu}g/g$, respectively, from soil sample collected in the vicinity of Mi-chun stream. On the other hand, 16 organochlorine pesticides and 12 dioxin-like PCB congeners, known as endocrine disrupting chemicals, selected in this study were not found above the limit of detection. Biomarker analyses using insect immune responses indicated that Waya-chun stream was suspected as exposure to environmental pollutants. Limitation and compensation of both environmental analysis techniques are discussed.

Tributyltin Increases Adipogenesis and Apoptosis of Rat Testicular Interstitial Cells (Tributyltin에 의한 흰쥐 정소 내 간질세포의 지방세포 유도와 세포자연사 증가)

  • Song, Yeon-Hwa;Jung, Ji-Eun;Lee, Hyun-A;Hong, Ji-Hee;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.297-306
    • /
    • 2010
  • Tributyltin (TBT), an endocrine disrupting chemical, has been reported to decrease testicular function by causing apoptosis in the testis, but this mechanism is not fully understood. Thus, in this study we examined whether TBT induces adipogenesis of the Leydig cells to find out the correlation between adipogenesis and apoptosis in the testis. Three week old SD male rats were orally administrated with sesame oil, 1 mg/kg of TBT, or 10 mg/kg of TBT daily for 1 week and weighed after administration. The testes obtained on day 8 were weighed and stained with BODIPY and TUNEL kit. Using total RNA extracted from the isolated Leydig cells, adipogenesis and apoptosis-related genes were analyzed by real-time PCR. The testicular weights of the rats treated with 10 mg/kg TBT were significantly decreased compared to those in the control rats treated with sesame oil. As a result of BODIPY staining, the number of Leydig cells stained with BODIPY was increased in the rats treated with 10 mg/kg TBT compared with the control rats. Similar to BODIPY staining results, the TUNEL assay showed that the apoptosis of Leydig cells was increased in TBT treated rats. The results of the gene expression analysis in the Leydig cells showed that the expression of adipogenesis-related genes (PPAR${\gamma}$, aP2, Perilipin, CD36) and apoptosis-related genes (TNFRSF1A, TNFSF10) was increased after TBT administration. The present study demonstrates that TBT induces the expression of adipogenesis-related and apoptosis-related genes in the Leydig cells leading to adipogenesis and apoptosis in the testes. These results suggest that the dysfunction of Leydig cells by TBT exposure may cause a loss in testicular function.