• Title/Summary/Keyword: Endmill

Search Result 135, Processing Time 0.021 seconds

An Evaluation on Cutting Characteristics in Milling Process with Different Helix Angle Endmills (밀링가공에서 부등각 엔드밀의 절삭특성 평가)

  • 이상복;김원일;왕덕현;김실경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining tolerance. A conventional endmill which all low blades are $30^{\circ}$ helix angles and a different helix angle endmill which the opposite two blades are $30^{\circ}$ and the other opposites are different helix angles were studied. The cutting farce, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type A($25^{\circ}$$30^{\circ}$) appeared to bring the most satisfactory result.

Aa Evaluation on Cutting Characteristics in Milling process with Different Helix Angle Endmills (밀링가공에서 부등각 엔드밀의 절삭특성에 관한 고찰)

  • 이상복;김원일;왕덕현;김실경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.196-201
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining-tolerance. A conventional endmill which all four blades are $30^\circ$ helix angles and a different helix angle endmill which the opposite two blades are $30^\circ$ and the other opposites are different helix angles were studied. The cutting force, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling, machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type $A(25^\circ+30^\circ)$ appeared to bring the most satisfactory result.

  • PDF

Evaluation of Tool Wear of P/M High Speed Steel Flat Endmill (분말 고속도공구강 평엔드밀의 공구마멸 평가)

  • Jung, Ha-Seung;Ko, Tae-Jo;Kim, Hee-Sool;Bae, Jong-Soo;Kim, Yong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.154-160
    • /
    • 2002
  • Powder metallurgy(P/M) process has been used for the production of high performance high-speed steels. P/M high speed steel has more uniform and fine microstructure than those of conventional wrought products. Therefore, it offers distinct advantages over conventional tool steels. The superior uniformity of composition and fine microstrucure lead to excellent toughness and less distortion during heat treatment, which in turn can reduce total grinding costs and provides other benefits, such as uniform hardness and increased tool life. From these reasons, milling, hole machining, broaching, and gear manufacturing tools are major applications of P/M high-speed steels. In this research, we evaluated tool wear of flat endmill which is made of P/M high-speed steel from the view point of cutting tool performance.

PaperMill - A Layered Manufacturing System Using Lamination and Micro Endmill (PaperMill - 박막과 마이크로 엔드밀을 사용한 적층조형 시스템)

  • 배광모;이상욱;이병철;강경수;김형욱;홍영정;진영성;김종철;박정화
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.115-121
    • /
    • 2003
  • A new Layered Manufacturing(LM) system, named PaperMill, is developed applying micro milling technology. A micro endmill(127 11m in diameter) is introduced as the cutter of build material. The selected build material for this system is an adhesive-coated paper roll which provides advantages such as good bonding between layers, machinability, and low material cost. A 3-axis CNC controller and three step-motors are used for the movement of X-Y-Z table of the system. For simplicity of the control of mechanism, the control system for feeding the paper roll is uncoupled from CNC controller. Two code converters are developed for the toolpath generation of the new LM system. The NC converter generates a set of NC codes for PaperMill using commercial CAM software while the SML converter generates an NC code from Quickslice's SML format. The NC codes generated from the converters consist of a series of profile data and trigger code for paper feeding. Two sample gears were fabricated to prove the concept of the system, which shown that the dimensional errors of the fabricated gears is under 3.4 percent.

Study on the effects of endmill's shape on the machinabitity and the cutting time (엔드밀의 형상이 가공특성 및 절삭시간에 미치는 영향에 관한 연구)

  • 김병희;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.52-57
    • /
    • 1993
  • In this study, the inclined endmilling process with a 3-axis machining center using inalined jigs is introduced for the purpose of reducing overall Dies/Molds machining time and improving the machining accuracies. In order to analyse the cutting mechanism of a given endmill more accurateky, the unification of the cutting mechanism model of 3-different-kind endmills is examined by using the mose radius as a parameter. By adding radial runouts as a parameter which influences on surface roughness, the superposition method which defines the effective cusp heigh superposing the cutter mark height and the conventional cusp height is modified. And 3-D surface topography predicted in this paper looks like the surface normally observed in practice. Through machining experiments, the adequacy of the superposition algorithm was confirmed.

  • PDF

Machining Characteristics in High Speed Endmill Operation Considering Clearance Angle (엔드밀 가공 시 여유각을 고려한 가공특성)

  • 박정남;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.43-49
    • /
    • 2004
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed end milling operation. The tool geometry parameters have complex relationship with cutting process parameter. In order to explain the effect of clearance angle, 2D turning operation in lathe and end milling operations are performed. Tools with different clearance angles are manufactured. Cutting forces, machining accuracy and tool life are examined according to the change of clearance angle. As clearance angle increases, cutting force decreases and machining accuracy improves. But it has been proved that there exists the optimal clearance angle according to the diameter of end mill for maximum tool life which is measured by frank wear.

A Study on Wear Mechanism of CBN Ball Endmills (CBN 볼엔드밀의 마모메카니즘에 관한 연구)

  • Park, S.W.;Lee, K.W.;Lee, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.121-126
    • /
    • 1997
  • The use of CBN tool material has been greatly increased because of the superior metal cutting performance for the machining of hardened steel. This paper presents some experimental results on the ball endmiling of harened steels. Three different hardnesses of STD11 workpieces were machined using CBN ball endimills, and the machining characteristics including cutting forces tool wear, and surface roughness of machined surface were compared. It has been found that the CBN ball endmill works better in the machining of harder workpieces. The microscopic examination explains that this unusual phenomenon is caused by the difference of microstructure of each workpieces.

  • PDF

Comparison of Lubrication Methods during Milling by Endmill Tool (엔드밀 공구를 이용한 밀링가공시 윤활 방법의 비교)

  • 정용운;김주현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.66-70
    • /
    • 2003
  • Recently, environmental conscious machining becomes one of the most important technology in modern manufacturing industry. Especially in metal cutting, cutting fluid often results in many environmental problems. Many technologies have been developed to reduce the problems of the cutting fluid. But most of the technologies need another devices which sometimes require large space and also are very expensive, such as cooling system. In this paper, air compressor is only used to replace the functions of cutting fluid as semi-dry cutting. Cutting forces, cutting moments, and tool wear were measured to obtain cutting characteristics, and were compared with those of dry cutting and non-dry cutting. In the results of the experiments, semi-dry cutting was found to show better cutting performances than dry cutting and non-dry cutting.

  • PDF

Development of the program for Optimal Design of High Speed Endmill (최적형상의 고속용 엔드밀 설계를 위한 프로그램 개발)

  • 고성림;한창규;서천석;김경배
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.500-503
    • /
    • 2003
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining

  • PDF

A Study on Transition of Dimension Error and Surface Precision in High Speed Machining of Al-alloy (Al 합금의 고속가공에서 치수오차와 표면정도 추이고찰)

  • 정문섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.96-102
    • /
    • 2000
  • High speed machining aims to raise the productivity and efficiency by making more precise and higher value-added products than any other machining method by means of the high speediness of spindle and feed drive system. The purpose of this study is to investigate the effects of the run-out of endmill on the dimension precision of workpiece and to obtain the fundamental data on high speed machining which is available by machining the side of Al-alloy with solid carbide endmills in high speed machining center and by measuring dimensions and surface roughness. From the results of experimentation following are obtained ; if spindle speed is ultra high in conditions that radial depth of cut and feed per tooth are very small highly precise and accurate products are to be made efficiently with high feed rate. and so we can raise productivity.

  • PDF