• Title/Summary/Keyword: Endmill

Search Result 135, Processing Time 0.021 seconds

Surface Properties and Tool Wear of Si3n4-hBN Machinable Ceramics in Endmill Machining using Tungsten Carbide Tool (텅스텐 카바이드 공구를 사용한 앤드밀 가공에서 Si3n4-hBN 머시너블 세라믹스의 표면특성과 공구마멸)

  • Jang, Sung-Min;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5, 10, 15, 20, 25 and 30%. The objectives of this paper is to evaluate the fracture phenomenon of the tungsten carbide tool and the variation of surface integrity of the manufactured machinable ceramics under various cutting conditions during end mill machining With CNC machining center.

  • PDF

Cutting Performance of Ti-Al-Si-N Coated Endmill for High-Hardened materials by Hybrid Coating System (하이브리드 코팅에 의한 고경도 소재용 Ti-Al-Si-N코팅 엔드밀의 절삭성능평가)

  • 김경중;강명창;이득우;김정석;김광호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.89-94
    • /
    • 2003
  • Hard coatings are known to improve the performance of cutting tools in aggressive machining applications, such as high speed machining. New superhard Ti-Al-Si-W films, characterized by a nanocomposite nano-sized (Ti,Al,Si)N crystallites embedded in amorphous $Si_3 N_4$ matrix, could be successfully synthesized on WC-Co substrates by a hybrid coating system of arc ion plating(AIP) and sputtering method. The hardness of Ti-Al-Si-N film increased with incorporation of Si, and had the maximum value ~50 GPa at the Si content of 9 at.%, respectively. And the X-ray diffraction patterns of Ti-Al-Si-N films with various Si content is investigated. In this study, Ti-Al-Si-N coatings were applied to end-mill tools made of WC-Co material by a hybrid coating system. Cutting tests fir the high-hardened material (STD11,$H_R$)C62 and their performances in high speed cutting conditions were studied. Also, the tool wear and tool lift of Ti-Al-Si-N with various si(6, 9, 19) contents were measured.

  • PDF

Tool Deflection and Geometric Accuracy to the Change of Inclination Position Angle during Machining Sculptured Surface (곡면가공시 경사위치각 변화에 따른 공구변형과 형상정밀도)

  • 왕덕현;박희철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.55-64
    • /
    • 2001
  • In this study, hemisphere and cylindrical shapes were machined for different tool paths and machining conditions with ball endmill cutters. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting is obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. Roundness values were found in least roundness error when down-milling in upward cutting. It is obtained the very little difference between 90。and 45。 of inclination position angle. The best surface roughness value was obtained in upward up-milling and showed different tendency with tool deflection and cutting force. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. Therefore, this phenomenon which is received over cutting resistance can be caused of chatter.

  • PDF

Effect on Axial Rake Angle of Cutting Edge for Machinable Ceramics (절삭 선단의 축 방향 경사각이 가공성 세라믹에 미치는 영향)

  • Jang, Sung-Min;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. Generally, ceramics are machined using conventional method such as grinding and polishing. However these processes are generally costly and have low MRR(material removal rate). To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 10 and 15%. The purpose of this study is an analysis of endmill's rake angle for appropriate tools design and manufacturing for the machinable ceramics. In this study, Experimental works are executed to measure cutting force, surface roughness, tool fracture, on different axial rake angle of endmills. Cutting parameters, namely, feed, cutting speed and depth of cut are used to accomplish purpose of this paper. Required experiments are performed, and the results are investigated.

The Optimization of Ball End-Milling Parameters on the Surface Roughness of STD61 Steel using the Taguchi Method (Taguchi 방법을 이용한 STD61의 표면거칠기에 대한 볼 엔드 밀링 파라미터 최적화)

  • Ahmed, Farooq;Byeon, Ji Hyeon;Park, Ki Moon;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.153-158
    • /
    • 2017
  • When considering the proper function and life cycle length of a product, its surface finish plays an important role. This experimental study was carried out to understand the effect of input factors on surface roughness and how it can be minimized by controlling the input parameters. This experimental work was performed by machining the surface of STD 61 blocks with a surface inclined at $30^{\circ}$ by ball end-milling and optimizing the input parameters using the Taguchi technique. Signal-to-Noise (S/N) ratio and analysis of variance (ANOVA) were applied to find the significance of the input parameters. The optimum level of input parameters to minimize surface roughness was obtained.

Enhancement of Wear Resistance by Low Heat Treatment and the Plasma Source Ion Implantation of Tungsten Carbide Tool (초경 엔드밀의 플라즈마 이온 주입과 저온 열처리를 통한 내마멸성 향상)

  • Kang, Seong-Ki;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.162-168
    • /
    • 2011
  • In this research, nitrogen plasma source ion implantation(PSII) of non-coated tungsten carbide endmill tools was conducted with low heat treatment for increasing wear resistance. After the low heat treatment of PSIIed tools to give a homogeneity of wear resistance, the surface modification of tools was analyzed by hardness test, surface roughness and cutting forces. As for the resultant cutting forces, low heat treatment in temperature of $400^{\circ}C$ and $500^{\circ}C$ is stable because of low cutting resistance. The 20-minutes heat treated tool at spindle speed 25000rpm has superiority of surface roughness, Ra of $0.420{\mu}m$ and was found to have good wear resistance. The higher hardness value was obtained by increasing temperature from $300^{\circ}C$ to $600^{\circ}C$ for PSIIed tools with low heat treatment. As the PSIIed tools under 10minutes at temperature of $600^{\circ}C$ have the highest hardness as Hv of 2349.8, It was analyzed that temperature processing give much influences on hardness.

Diagnosis of the Drill Wear Based on Fuzzy Logic (퍼지 논리를 이용한 드릴의 마모 상태 진단)

  • 권오진;최성주;조현찬
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.833-836
    • /
    • 2001
  • One of the most important technology in Factory Automation and Unmanned Automation is to construct the diagnostic system for manufacturing process. To improve the productivity in cutting process, the state of tools such as bite, drill, endmill should be monitored continuously. In this study, fuzzy logic was used to check the wear of drill in drilling process. The input variables to construct the fuzzy rules are cutting force and the rate of cutting force's change. The experiment was done with the fixed spindle speed and feed rate in cutting condition. The proposed algorithm is verified by comparing Fuzzy wear with real wear measured.

  • PDF

A Study on the High Speed Characteristics of Plastic Mould Steel using Ball End Mill AlTiN Coated Layers (볼 엔드밀 AlTiN코팅 층수에 따른 플라스틱금형강의 고속가공에 관한 연구)

  • Lee, Seung-Chul;Cho, Gyu-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • This paper investigated into process characteristics of AlTiN coated layers for machining to the direction of upper and lower in plastic mold material (KP-4) with the cemented carbide ball endmill with the diameter of 8mm coated AlTiN layers (1~4) step by step using machining center. The material used in experiments was KP-4 that was machined by three types of inclined angles; $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ As estimated mechanical properties of AlTiN coated layers, it was shown the most result in the condition of three layered coating that the coating that the coating depth, the hardness of the coated layer and the surface roughness of the coated layer were $13{\mu}m$, Hv 3027.3 and $0.042{\mu}m$, respectively. The cutting component was better at the condition of upper direction than that of lower direction in all experimental conditions and indicated to be less which the bigger angle of the material was increased the effective diameter of the tool.

A Study on the Machining Characteristics for Micro Endmilling by using Ultrahigh-Speed Air Turbine Spindle (초고속 스핀들에 의한 마이크로 엔드밀링의 가공특성에 관한 연구)

  • Kwon D.H.;Kang I.S.;Kim J.H.;Kang M.C.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.598-603
    • /
    • 2005
  • Recently, the advanced industries using micro parts are rapidly growing. The appearance of ultra-precision feed mechanism and the development of control system make it possible to process parts in sub millimeter scale by mechanical methods. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro parts to micro products. So, micro stairs have been trying to cut by using high revolution air turbine spindle and micro-endmill, and studying for magnitude of cutting force. This investigation deals removal characteristics of burr generated by micro endmilling process. Also, decreasing of burr is significant problem in making smooth and precise parts in micro endmilling. In micro endmilling, the material removal rate(MRR) and cutting forces are very small. This paper presents an investigation on the machining characteristics for micro stairs by using ultrahigh-speed air turbine spindle in machining.

  • PDF

Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape (장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.