• Title/Summary/Keyword: End-to-end speech recognition

Search Result 94, Processing Time 0.02 seconds

Performance Improvement on Hearing Aids Via Environmental Noise Reduction (배경 잡음 제거를 통한 보청 시스템의 성능 향상)

  • 박선준;윤대희;김동욱;박영철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2000
  • Recent progress in digital and VLSI technology has offered new possibility fer noticeable advance of hearing aids. Yet, environmental noise remains one of the major problems to hearing aid users. This paper describes results which speech recognition performance and speech discrimination performance was measured for listeners with sensorineural hearing loss, while listeners in speech-band noise. In addition, to ameliorate hearing-aided environments of hearing impaired listeners, environmental noise reduction using speech enhancement techniques are investigated as a front-end of conventional hearing aids. Speech enhancement techniques are implemented in a realtime system equipped with DSP board. The clinical test results suggest that the speech enhancement technique may work in synergy with gain functions fer the greater SNR improvement as the preprocessing algorithm of digital hearing aids.

  • PDF

Voice Activity Detection Method Using Psycho-Acoustic Model Based on Speech Energy Maximization in Noisy Environments (잡음 환경에서 심리음향모델 기반 음성 에너지 최대화를 이용한 음성 검출 방법)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.447-453
    • /
    • 2009
  • This paper introduces the method for detect voices and exact end point at low SNR by maximizing voice energy. Conventional VAD (Voice Activity Detection) algorithm estimates noise level so it tends to detect the end point inaccurately. Moreover, because it uses relatively long analysis range for reflecting temporal change of noise, computing load too high for application. In this paper, the SEM-VAD (Speech Energy Maximization-Voice Activity Detection) method which uses psycho-acoustical bark scale filter banks to maximize voice energy within frames is introduced. Stable threshold values are obtained at various noise environments (SNR 15 dB, 10 dB, 5 dB, 0 dB). At the test for voice detection in car noisy environment, PHR (Pause Hit Rate) was 100%accurate at every noise environment, and FAR (False Alarm Rate) shows 0% at SNR15 dB and 10 dB, 5.6% at SNR5 dB and 9.5% at SNR0 dB.

A Single-End-Point DTW Algorithm for Keyword Spotting (핵심어 검출을 위한 단일 끝점 DTW알고리즘)

  • 최용선;오상훈;이수영
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.209-219
    • /
    • 2004
  • In order to implement a real time hardware for keyword spotting, we propose a Single-End-Point DTW(SEP-DTW) algorithm which is simple and less complex for computation. The SEP-DTW algorithm only needs a single end point which enables efficient applications, and it has a small wont of computations because the global search area is divided into successive local search areas. Also, we adopt new local constraints and a new distance measure for a better performance of the SEP-DTW algorithm. Besides, we make a normalization of feature same vectors so that they have the same variance in each frequency bin, and each frame has the same energy levels. To construct several reference patterns for each keyword, we use a clustering algorithm for all training patterns, and mean vectors in every cluster are taken as reference patterns. In order to detect a key word for input streams of speech, we measure the distances between reference patterns and input pattern, and we make a decision whether the distances are smaller than a pre-defined threshold value. With isolated speech recognition and keyword spotting experiments, we verify that the proposed algorithm has a better performance than other methods.

DNN based Robust Speech Feature Extraction and Signal Noise Removal Method Using Improved Average Prediction LMS Filter for Speech Recognition (음성 인식을 위한 개선된 평균 예측 LMS 필터를 이용한 DNN 기반의 강인한 음성 특징 추출 및 신호 잡음 제거 기법)

  • Oh, SangYeob
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 2021
  • In the field of speech recognition, as the DNN is applied, the use of speech recognition is increasing, but the amount of calculation for parallel training needs to be larger than that of the conventional GMM, and if the amount of data is small, overfitting occurs. To solve this problem, we propose an efficient method for robust voice feature extraction and voice signal noise removal even when the amount of data is small. Speech feature extraction efficiently extracts speech energy by applying the difference in frame energy for speech and the zero-crossing ratio and level-crossing ratio that are affected by the speech signal. In addition, in order to remove noise, the noise of the speech signal is removed by removing the noise of the speech signal with an average predictive improved LMS filter with little loss of speech information while maintaining the intrinsic characteristics of speech in detection of the speech signal. The improved LMS filter uses a method of processing noise on the input speech signal by adjusting the active parameter threshold for the input signal. As a result of comparing the method proposed in this paper with the conventional frame energy method, it was confirmed that the error rate at the start point of speech is 7% and the error rate at the end point is improved by 11%.

Endpoint Detection of Speech Signal Using Lyapunov Exponent (리아프노프 지수를 이용한 음성신호 종점 탐색 방법)

  • Zang, Xian;Kim, Jeong-Yeon;Chong, Kil-To
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.28-33
    • /
    • 2009
  • In the research of speech recognition, locating the beginning and end of a speech utterance in a background of noise is of great importance. The conventional methods for speech endpoint detection are based on two simple time-domain measurements-short-time energy, and short-time zero-crossing rate, which couldn't guarantee the precise results if in the low signal-to-noise ratio environments. This paper proposes a novel approach that finds the Lyapunov exponent of time-domain waveform. This proposed method has no use for obtaining the frequency-domain parameters for endpoint detection process, e.g. Mel-Scale Features, which have been introduced in other paper. Accordingly, this algorithm is low complexity and suitable for Digital Isolated Word Recognition System.

The Analysis and Recognition of Korean Speech Signal using the Phoneme (음소에 의한 한국어 음성의 분석과 인식)

  • Kim, Yeong-Il;Lee, Geon-Gi;Lee, Mun-Su
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.38-47
    • /
    • 1987
  • As Korean language can be phonemically classified according to the characteristic and structure of its pronunciation, Korean syllables can be divided into the phonemes such as consonant and vowel. The divided phonemes are analyzed by using the method of partial autocorrelation, and the order of partial autocorelation coefficient is 15. In analysis, it is shown that each characteristic of the same consonants, vowels, and end consonant in syllables in similar. The experiments is carried out by dividing 675 syllables into consonants, vowels, and end consonants. The recognition rate of consonants, vowels, end-consonants, and syllables are $85.0(\%)$, $90.7(\%)$, $85.5(\%)$and $72.1(\%)$ respectively. In conclusion, it is shown that Korean syllables, divided by the phonemes, are analyzed and recognized with minimum data and short processing time. Furthermore, it is shown that Korean syllables, words and sentences are recognized in the same way.

  • PDF

Development of Automatic Creating Web-Site Tool for the Blind (시각장애인용 웹사이트 자동생성 툴 개발)

  • Baek, Hyeun-Ki;Ha, Tai-Hyun
    • Journal of Digital Contents Society
    • /
    • v.8 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • This paper documents the design and implementation of an automatic creating web-site tool for the blind to build their own homepage by using both voice recognition and voice mixed technology with equal ease as the non-disabled. The blind can make voice mails, schedules, address lists and bookmarks by making use of the tool. It also facilitates communication between the non-disabled with the help of their information management system. This tool converts basic commands into voice recognition, also making an offer of text-to-speech which supports voice output. In the end, the tool will remove the blind's social isolation, allowing them to enjoy the information age like the non-disabled.

  • PDF

Voice Activity Detection Based on Signal Energy and Entropy-difference in Noisy Environments (엔트로피 차와 신호의 에너지에 기반한 잡음환경에서의 음성검출)

  • Ha, Dong-Gyung;Cho, Seok-Je;Jin, Gang-Gyoo;Shin, Ok-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.768-774
    • /
    • 2008
  • In many areas of speech signal processing such as automatic speech recognition and packet based voice communication technique, VAD (voice activity detection) plays an important role in the performance of the overall system. In this paper, we present a new feature parameter for VAD which is the product of energy of the signal and the difference of two types of entropies. For this end, we first define a Mel filter-bank based entropy and calculate its difference from the conventional entropy in frequency domain. The difference is then multiplied by the spectral energy of the signal to yield the final feature parameter which we call PEED (product of energy and entropy difference). Through experiments. we could verify that the proposed VAD parameter is more efficient than the conventional spectral entropy based parameter in various SNRs and noisy environments.

Recognizing Hand Digit Gestures Using Stochastic Models

  • Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.807-815
    • /
    • 2008
  • A simple efficient method of spotting and recognizing hand gestures in video is presented using a network of hidden Markov models and dynamic programming search algorithm. The description starts from designing a set of isolated trajectory models which are stochastic and robust enough to characterize highly variable patterns like human motion, handwriting, and speech. Those models are interconnected to form a single big network termed a spotting network or a spotter that models a continuous stream of gestures and non-gestures as well. The inference over the model is based on dynamic programming. The proposed model is highly efficient and can readily be extended to a variety of recurrent pattern recognition tasks. The test result without any engineering has shown the potential for practical application. At the end of the paper we add some related experimental result that has been obtained using a different model - dynamic Bayesian network - which is also a type of stochastic model.

  • PDF

Automatic Speech Style Recognition Through Sentence Sequencing for Speaker Recognition in Bilateral Dialogue Situations (양자 간 대화 상황에서의 화자인식을 위한 문장 시퀀싱 방법을 통한 자동 말투 인식)

  • Kang, Garam;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.17-32
    • /
    • 2021
  • Speaker recognition is generally divided into speaker identification and speaker verification. Speaker recognition plays an important function in the automatic voice system, and the importance of speaker recognition technology is becoming more prominent as the recent development of portable devices, voice technology, and audio content fields continue to expand. Previous speaker recognition studies have been conducted with the goal of automatically determining who the speaker is based on voice files and improving accuracy. Speech is an important sociolinguistic subject, and it contains very useful information that reveals the speaker's attitude, conversation intention, and personality, and this can be an important clue to speaker recognition. The final ending used in the speaker's speech determines the type of sentence or has functions and information such as the speaker's intention, psychological attitude, or relationship to the listener. The use of the terminating ending has various probabilities depending on the characteristics of the speaker, so the type and distribution of the terminating ending of a specific unidentified speaker will be helpful in recognizing the speaker. However, there have been few studies that considered speech in the existing text-based speaker recognition, and if speech information is added to the speech signal-based speaker recognition technique, the accuracy of speaker recognition can be further improved. Hence, the purpose of this paper is to propose a novel method using speech style expressed as a sentence-final ending to improve the accuracy of Korean speaker recognition. To this end, a method called sentence sequencing that generates vector values by using the type and frequency of the sentence-final ending appearing in the utterance of a specific person is proposed. To evaluate the performance of the proposed method, learning and performance evaluation were conducted with a actual drama script. The method proposed in this study can be used as a means to improve the performance of Korean speech recognition service.