• Title/Summary/Keyword: End-to-end learning

Search Result 1,150, Processing Time 0.026 seconds

Monitoring of Chemical Processes Using Modified Scale Space Filtering and Functional-Link-Associative Neural Network (개선된 스케일 스페이스 필터링과 함수연결연상 신경망을 이용한 화학공정 감시)

  • Park, Jung-Hwan;Kim, Yoon-Sik;Chang, Tae-Suk;Yoon, En-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1113-1119
    • /
    • 2000
  • To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.

  • PDF

The Effect of Sense of Community on Learner Satisfaction in Online Learning : A Meditating Model

  • Lee, Sang-Kon;Lee, Ji-Yeon
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.3
    • /
    • pp.153-167
    • /
    • 2008
  • This study examines the effect of sense of community on the relationship between learner satisfaction and influencing factors related to the online learning environment. Influencing factors related to the online learning environment are derived from previous literature and classified into two groups : social dimension (leader's enthusiasm, offline activities) and system dimension (usefulness, ease of use, enjoyability). Learner satisfaction is defined as the learners' perceived learning gains from taking an online class. Study participants included 250 university students from two different institutions. The participants were divided into 43 groups and asked to complete an online TOEIC preparation module using a commercial cooperative learning system over 4 weeks. Data were collected at three points for each participant, at the beginning, 3 weeks after, and at the end of the online module. Two system factors related to the online learning environment (ease of use, usefulness) directly influenced learner satisfaction, while social factors indirectly influenced learner satisfaction through the mediating role of sense of community.

  • PDF

Retrospective View of Developmental Process and the Future Prospect of Psychology of Learning Mathematics (수학교육학에서 바라본 학습심리학의 발달과정과 전망)

  • 황우형
    • The Mathematical Education
    • /
    • v.42 no.2
    • /
    • pp.121-135
    • /
    • 2003
  • This article retrospects the developmental process of the psychology of learning and its' influence on mathematics education. At the end of the article, brain-based learning science is introduced to examine its possibility to improve the psychology of learning mathematics. Behaviorists points of views such as Skinner, Guthrie, and Gagne were summarized to discuss the influences on the learning and teaching of mathematics. Gestalt' theories and Constructivism are also included in the discussion of developmental process of learning psychology. In elaboration of the brain-based learning science, recent research findings and the possibility of it's impact on mathematics education were discussed. Since mathematics itself is the most abstract subject it could be more challenging to identify the teaming process of mathematics compared with other areas. The possibilities of identifying the teaming process of mathematics are cautiously anticipated with a help of new paradigm.

  • PDF

Design a Learning Management System Platform for Primary Education

  • Quoc Cuong Nguyen;Tran Linh Ho
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.258-266
    • /
    • 2024
  • E-learning systems have proliferated in recent years, particularly in the wake of the global COVID-19 pandemic. For kids, there isn't a specific online learning platform available, though. To do this, new conceptual models of training and learning software that are adapted to the abilities and preferences of end users must be created. Young pupils: those in kindergarten, preschool, and elementary school are unique subjects with little research history. From the standpoint of software technology, young students who have never had access to a computer system are regarded as specific users with high expectations for the functionality and interface of the software, social network connectivity, and instantaneous Internet communication. In this study, we suggested creating an electronic learning management system that is web-based and appropriate for primary school pupils. User-centered design is the fundamental technique that was applied in the development of the system that we are proposing. Test findings have demonstrated that students who are using the digital environment for the first time are studying more effectively thanks to the online learning management system.

Fuzzy Learning Control: Application to an Industrial Polymerization Reactor

  • Seokho-Yi;Park, Sunwon-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1106-1108
    • /
    • 1993
  • This paper deals with an industrial application of a fuzzy feedback combined learning control to an industrial batch free radical polymerization reactor. As a result, the plant has reduced the batch reaction time by 50 minute and stabilized both by 40 percent reduction of the standard deviations of product qualities, such as the total solid content and the graft gum, and by 45 percent reduction of the standard deviation of the batch reaction end time.

  • PDF

Vibration Control a Flexible Single Link Robot Manipulator Using Neural Networks (신경회로망을 이용한 유연성 단일 링크 로봇 매니퓰레이터의 진동제어)

  • 탁한호;이상배
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.3
    • /
    • pp.55-66
    • /
    • 1997
  • In this paper, applications of neural networks to vibration control of flexible single link robot manipulator are ocnsidered. The architecture of neural networks is a hidden layer, which is comprised of self-recurrent one. Tow neural networks are utilized in a control system ; one as an identifier is called neuro identifier and the othe ra s a controller is called neuro controller. The neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by dynamic error-backpropagation algorithm(DEA). To guarantee concegence and to get faster learning, an approach that uses adaptive learning rates is developed by introducing a Lyapunov function. When a flexible manipulator is ratated by a motor through the fixed end, transverse vibration may occur. The motor torque should be controlle dinsuch as way, that the motor is rotated by a specified angle. while simulataneously stabilizing vibration of the flexible manipulators so that it is arrested as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large body motions, as well as the flexural vibrations. Therefore, dynamic models for a flexible single link manipulator is derived, and LQR controller and nerual networks controller are composed. The effectiveness of the proposed nerual networks control system is confirmed by experiments.

  • PDF

Proposal of Electronic Engineering Exploration Learning Operation Using Computing Thinking Ability

  • LEE, Seung-Woo;LEE, Sangwon
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.110-117
    • /
    • 2021
  • The purpose of the study is to develop effective teaching methods to strengthen the major learning capabilities of electronic engineering learners through inquiry learning using computing thinking ability. To this end, first, in the electronic engineering curriculum, we performed teaching-learning through an inquiry and learning model related to mathematics, probability, and statistics under the theme of various majors in electronic engineering, focusing on understanding computing thinking skills. Second, an efficient electronic engineering subject inquiry class operation using computing thinking ability was conducted, and electronic engineering-linked education contents based on the components of computer thinking were presented. Third, by conducting a case study on inquiry-style teaching using computing thinking skills in the electronic engineering curriculum, we identified the validity of the teaching method to strengthen major competency. In order to prepare for the 4th Industrial Revolution, by implementing mathematics, probability, statistics-related linkage, and convergence education to foster convergent talent, we tried to present effective electronic engineering major competency enhancement measures and cope with innovative technological changes.

Arc Detection using Logistic Regression (로지스틱 회기를 이용한 아크 검출)

  • Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.566-574
    • /
    • 2021
  • The arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet and statistical features have been used, arc detection performance is degraded due to diverse arc waveforms. On the contray, Deep neural network (DNN) direcly utilizes raw data without feature extraction, based on end-to-end learning. However, a disadvantage of the DNN is processing complexity, posing the difficulty of being migrated into a termnial device. To solve this, this paper proposes an arc detection method using a logistic regression that is one of simple machine learning methods.

Improvement of Vocal Detection Accuracy Using Convolutional Neural Networks

  • You, Shingchern D.;Liu, Chien-Hung;Lin, Jia-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.729-748
    • /
    • 2021
  • Vocal detection is one of the fundamental steps in musical information retrieval. Typically, the detection process consists of feature extraction and classification steps. Recently, neural networks are shown to outperform traditional classifiers. In this paper, we report our study on how to improve detection accuracy further by carefully choosing the parameters of the deep network model. Through experiments, we conclude that a feature-classifier model is still better than an end-to-end model. The recommended model uses a spectrogram as the input plane and the classifier is an 18-layer convolutional neural network (CNN). With this arrangement, when compared with existing literature, the proposed model improves the accuracy from 91.8% to 94.1% in Jamendo dataset. As the dataset has an accuracy of more than 90%, the improvement of 2.3% is difficult and valuable. If even higher accuracy is required, the ensemble learning may be used. The recommend setting is a majority vote with seven proposed models. Doing so, the accuracy increases by about 1.1% in Jamendo dataset.

Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2021
  • Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.