• Title/Summary/Keyword: End-milling cutter

Search Result 83, Processing Time 0.016 seconds

Pencil Curve Tracing via Virtual Digitizing (가상 측정을 통한 펜슬곡선 추출)

  • 박정환;김보현;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-266
    • /
    • 1997
  • Pencil-curve machining, which is a single-pass ball-end milling along a concave edge on adie surface, is widely employed in die-surface machining. The cutter-path used for pencil-curve machining, which is the trajectory of the “ball-center point” of a ball-endmill sliding along a concave-edge region on the die surface, is called pencil-curve. Presented in the paper is a pencil-curve tracing algorithm in which “concave-type” sharp edges are computed from a “virtually digitized” model of the tool-envelope surface. The resulting “initial” pencil-cures are then refuted by applying a series of fairing operations. illustrative examples and methods for enhancing accuracy are also presented. The proposed pencil-curve tracing algorithm has been successfully implemented in a commercial CAM system specialized in die-machining and in the CAD/CAM system CATIA.

  • PDF

정면 밀링의 절삭력 해석을 위한 평균 비절삭저항 모델의 개발

  • 이병철;황정철;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.28-33
    • /
    • 1992
  • The paper describes a new mean specific cutting pressure model in order to improve the accuracy of prediction of cutting force for face milling. The new mean specific cutting pressure model produces a mean specific cutting pressure and coefficients applied to existing cutting model not by traditional method but by considering intermittence and variation of chip width according to insert cutting position to take into cutter geometry machining condition and width of workpiece, and considering a mean measure force according to spindle eccentricity and mean measure force according to spindle eccentricity and insert initial position errors.. The simulated forces in X, Y, Z directions resulted from the simulated cutting model and the new cutting model are compared with measured forces in the time end frequency domains. The simulated forces in the time and frequency domains. The simulated forces resulted from the new cutting model have a good degreement with measured forces in comparison with these resulted from the existing cutting model

Development of Tool and Optimal Cutting Condition Selection Program (최적 절삭 조건을 고려한 절삭공구 선정 프로그램 개발)

  • Shin, Dong-Oh;Kim, Young-Jin;Ko, Sung-Lim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2000
  • In order to perform a successful material cutting process, the operators are to select the suitable machining tools and cutting conditions for the cutting environment. Up to now, this has been a complicated procedure done by the data in the tool manufacturers' paper catalog and the operator's experiencial knowledge, so called heuristics. This research is motivated by the fact that using computer techniques in processing vast amount of data and information, the operator can determine the tool and cutting condition easily. In the developed program, the selection of milling cutter, insert, and components are combined to provide optimal cutting speed, depth of cut, feed rate, rpm, and power. This program also provides the selection routine for end mill, drilling, turning, and grinding where the suitable tools are selected by workpiece, holder type, cut type, and insert shape.

  • PDF