• 제목/요약/키워드: End-milling cutter

검색결과 83건 처리시간 0.023초

볼엔드밀 가공에서 런아웃 측정을 통한 가공성 평가에 관한 연구 (A Study on Evaluation of Machinability using cuter Runout in Ball-end Milling)

  • 김병국;박희범;이득우;김정석;정융호
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.35-44
    • /
    • 1999
  • The performance of interrupted cutting operations like milling is consideraly affected by cuter runout. In this study, cutter runout is selected as an important machining parameter for evaluation of machinability in ball-end milling and caused from misalignments of tool and holder, unbalanced mass of parts and tool deflection under machining. To evaluate the machinability due to cutter runout, the rotating accuracy of spindle, cutting force and surface roughness are measured. The rotating characteristics of spindle in each revolution speed were investigated by cutter runout in freeload. The predicted surface form of workpiece by measuring cutter runout data was compared with real surfaces. The results show that measuring runout with high response gap sensor is useful for studying the phenomenon of high-speed machining and the monitor surface form using in-process runout measurements in ball-end milling is possible.

  • PDF

최대경사방향 트리를 이용한 삼각형요소화 곡면모델의 NC 엔드밀링가공에 관한 연구 (NC End Milling Strategy of Triangulation-Based Curved Surface Model Using Steepest Directed Tree)

  • 맹희영
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2089-2104
    • /
    • 1995
  • A novel and efficient cutter path planning method for machining intricately shaped curved surfaces, called the steepest directed tree method, is presented. The curved surface is defined by triangular facets, the density and structure of which are determined by the intricacy and form accuracy of the surface. Geometrical form definition and recognition of the topological features are used to connect the nodes of the triangulated surface meshes for the successive and interconnected steepest pathways, which makes good use of end milling characteristics. The planetary cutter centers are determined to locate along smoothly changing paths and then the height values of the cutter are adjusted to avoid surface interference. Several machined examples of intersecting and intricate surfaces are presented to illustrate the benefits of the new approach. It is shown that due to more consistent geometry matching between cutter and surface(in comparison with the current CC Cartesian method) surface finish can be typically improved. Moreover, the material in concave fillets which is difficult to be removed by ball mills can be removed efficiently. The built-in positioning of cutter to avoid interference runs minutely in the sharp and discontinuous regions. The steepest upward movement of the cutter gives a stable dynamic cutting state and allows increase in the feedrate and spindle speed while remaining the stable cutting state.

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.

고속가공을 위한 정면밀링커터 바디시스템 개발 (Development of Face Milling Cutter Body System for High Speed Machining)

  • 장성민;맹민재;조명우
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.21-28
    • /
    • 2004
  • In modem manufacturing industries such as the airplane and automobile, aluminum alloys which are remarkable in durability have been utilized effectively. High-speed machining technology for surface roughness quality of workpiece has been applied in these fields. Higher cutting speed and feedrates lead to a reduction of machining time and increase of surface quality. Furthermore, the reduction of time required for polishing or lapping of machined surfaces improves the production rate. Traditional milling process for high speed cutting can be machined with end mill tool. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, face milling cutter which gives high MRR has developed face milling cutter body for the high speed machining of light alloy to overcome the problems. Also vibration experiment to detect natural frequency in free state and frequency characteristics during machining are performed to escape resonance.

엔드밀링 절삭력에 미치는 공구형상오차 I- 상향 엔드밀링 - (Effects of Cutter Runout on End Milling Forces I-Up Eng Milling-)

  • 이영문;양승한;송태성;권오진;백승기
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.63-70
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented in up end milling process using measured cutting forces. The average specific cutting resistance, Ka is defined as the main cutting force component divided by the modified chip section area. Ka value becomes smaller as the helix angle increases from $30^circC \;to\;40\circC$. But it becomes larger as the helix angle increases from $40^\circ$to 50 . On one hand, the Ka value shows a tendency to decrease with increase of the modified chip section area and this tendency becomes distinct with smaller helix angle.

터빈블레이드의 5축 고속가공에서 가공경로와 공구기울임 방향의 선정 (Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade)

  • 임태순;이유하;이득우;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.155-160
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries has brought new technological challenges, rebated to the growing complexity of products and the new geometry of the models. High speed milling with a 5-Axis milling machine has been widely used fur 3D sculptured surface parts. When turbine blades are machined by a 5-axis milling, their thin and cantilever shape causes vibrations, deflections and twists. Therefore, the surface roughness and the waviness of the workpiece are not good. In this paper, the effects of cutter orientation and the lead/tilt angle used to machine turbine blades with a 5-axis high speed ball end-milling were investigated to improve geometric accuracy and surface integrity. The experiments were performed using a lead/tilt angle of 15$^{\circ}$ to the workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vortical inward directions. Workpiece deflection, surface roughness and the machined surface were all measured with various cutter orientations such as cutting directions, and lead/tilt angle. The results show that the best cutting strategy for machining turbine blades with a 5-axis milling is horizontal inward direction with a tilt angle.

  • PDF

인덱서블 엔드밀링 공정을 위한 향상된 절삭력 모델의 개발 (Development of Improved Cutting Force Model for Indexable End Milling Process.)

  • 김성준;이한울;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.237-240
    • /
    • 2004
  • Indexable end mills, which consist of inserts and cutter body, have been widely used in roughing of parts in the mold industry. The geometry and distribution of inserts on cutter body are determined by application. This paper proposes analytical cutting force model for indexable flat end-milling process. Developed cutting force model uses the cutting-condition-independent cutting force coefficients and considers runout, cutter deflection and size effect for the accurate cutting force prediction. Unlike solid type endmill, the tool geometry of indexable endmill is variable according to the axial position due to the geometry and distribution of inserts on the cutter body. Thus, adaptive algorithm that calculates tool geometry data at arbitrary axial position was developed. Then number of flute, angular position of flute, and uncutchip thickness are calculated. Finally, presented model was validated through some experiments with aluminum workpiece.

  • PDF

엔드밀 가공에서 2축 절사력 PI 제어를 통한 커터 런아웃 제거에 관한 연구 (Cutter Runout Elimination in End Milling through Two-Axes PI Force Control)

  • 노종호;황준;;정의식
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.83-89
    • /
    • 1999
  • This paper presents the in-process runout compensation methodology to improve the surface quality of circular contouring cut in end milling process. The runout compensation system is based on the manipulation of workpiece position relative to cutter in minimizing the cutting force oscillation at spindle frequency. the basic concept of this approach is realized on a end milling machine whose machining table accommodates a set of orthogonal translators perpendicular to the spindle axis. The system performed that measuring the runout related cutting force component, formulating PI controlling commands, and the manipulating the workpiece position to counteract the variation of chip load during the circular contouring cut. To evaluate the runout compensation system performance, experimental study based on the implementation of two-axes PI force control is presented in the context of cutting force regulation and part surface finish improvement.

  • PDF

엔드밀 가공시 비례적분제어를 이용한 커터 런아웃 보상에 관한 연구 (A Study on the Cutter Runout Compensation by PI Control in End Mill Process)

  • 이기용;황준;정의식
    • 한국정밀공학회지
    • /
    • 제15권5호
    • /
    • pp.65-71
    • /
    • 1998
  • This paper presents in-process compensation methodology to eliminate cutter runout and improve machined surface quality. The cutter runout compensation system consists of the micro-positioning mechanism with the PZT (piezo-electric translator) which is embeded in the sliding table to manipulate the radial depth of cut in real time. For the implementation of cutter runout compensation methodology. cutting force adaptive control was proposed in the angle domain based upon PI (proportional-integral) control strategy to eliminate chip-load change in end milling process. Micro-positioning control due to adaptive acuation force response improves the machined surface quality by compensation or elimination of cutter runout induced cutting force variation. This results will provide lots of information to build-up the precision machining technology.

  • PDF

Inconel 718 상향 엔드밀링시 절삭력에 미치는 공구형상오차 (Effects of cutter runout on cutting forces during up-endmilling of Inconel718)

  • 이영문;양승한;장승일;백승기;김선일
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.302-307
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during up-end milling of Inconel 718 using measured cutting forces. The specific cutting resistance, K. and $K_t$ are defined as the radial and tangential cutting forces divided by the modified chip section area. Both of $K_r$, and $K_t$ values become smaller as the helix angle increases from $30^\circ$ to $40^\circ$ Whereas they become larder as the helix angle increases from $40^\circ$ to $50^\circ$. On the other hand, the $K_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency becomes distinct with smaller helix angle.

  • PDF