• Title/Summary/Keyword: End-milling Force

Search Result 217, Processing Time 0.026 seconds

A Study on the Flexible Cutting Force Model in the Ball End Milling Process (볼 엔드밀 가공의 유연 절삭력 모델에 관한 연구)

  • 최종근;강윤구;이재종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.44-52
    • /
    • 2003
  • This research suggests a cutting force model for the ball end milling processes. This model includes the effect of tool run out and tool deflection. In the proposed model, the flutes of ball end mills are considered as series of infinitesimal elements and each cutting edge is assumed to be straight for the analysis of the oblique cutting process, in which the small cutting edge element has been analyzed as an orthogonal cutting process n the plane including the cutting velocity and the chip-flow vector. Therefor, the cutting forces can be calculated through the model using the orthogonal cutting data obtained from the orthogonal cutting test. In order to enhance the performance of the model, the flutes of ball end mill are defined to keep geometric consistency at the peak of the ball part and the junction with the end mill part. The divided infinitesimal cutting edges are regulated to be even lengths. Some experiments show the validity of the developed model in the various cutting coalitions.

A Study on the CNC Milling Machining of Thin-wall Part (범용 CNC 밀링에 의한 박막 측벽 파트 가공에 관한 연구)

  • 지성희;이동주;신보성;최두선;제태진;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.83-88
    • /
    • 2001
  • In order to suggest the proper optimal conditions of the CNC milling machining for the Thin-wall surface, some experiments were carried out. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical example for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter for end milling is one of the important factors affecting the cutting cost. In this paper, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.

  • PDF

A Study on the Precision Machining during End Milling Poeration by Prediction of Generated Surface Topography (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.788-793
    • /
    • 1997
  • The surface,generated by end milling operation, is deteriorated by tool runout,vibration,friction,tool deflection, etc. In many source,deflection of tool affects to surfave accuracy. To develop a surface accracy model,method for the prediction of the topography of machined surfaces has been developed based on models of machine tool kinematics and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool resulted in cutting force. For the more accurate prediction of cutting force,flexible end mill model is used to simulate cutting process. Compute simu;ation have shown the feasibility of the surface generation system.

  • PDF

A Study on Evaluation of Machinability using cuter Runout in Ball-end Milling (볼엔드밀 가공에서 런아웃 측정을 통한 가공성 평가에 관한 연구)

  • Kim, Byoung-Kook;Park, Hee-Bum;Lee, Deug-Woo;Kim, Jeong-Suk;Jung, Yoong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.35-44
    • /
    • 1999
  • The performance of interrupted cutting operations like milling is consideraly affected by cuter runout. In this study, cutter runout is selected as an important machining parameter for evaluation of machinability in ball-end milling and caused from misalignments of tool and holder, unbalanced mass of parts and tool deflection under machining. To evaluate the machinability due to cutter runout, the rotating accuracy of spindle, cutting force and surface roughness are measured. The rotating characteristics of spindle in each revolution speed were investigated by cutter runout in freeload. The predicted surface form of workpiece by measuring cutter runout data was compared with real surfaces. The results show that measuring runout with high response gap sensor is useful for studying the phenomenon of high-speed machining and the monitor surface form using in-process runout measurements in ball-end milling is possible.

  • PDF

Characteristics of Ball End Milling and Rotary Die-sinking Electrical Discharge Machining for the Cutting Inclination Location (가공경사면 위치에 따른 볼엔드밀가공과 회전식 형조방전가공 특성)

  • 왕덕현;김원일;박성은;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • In this study, work materials of the ree form surface shape was machined by ball end mill cutter according to the change of cutting location and depth, and the acquired data of cutting force, tool deflection and shape accuracy were analyzed. Cutting force results were obtained with tool dynamometer and tool deflection values were measured by a couple of eddy-current sensors. Shape accuracy was obtained by roundness tester and surface profile measuring machine. As inclination angle was decreased, cutting force was increased. Cutting force showed large value at $105^{\circ}$ and $150^{\circ}$. Tool deflection was less at down milling than at up milling, decreased at 45$^{\circ}$ and 120$^{\circ}$, and shown large tool deflection at $150^{\circ}$. Roughness values were found to be bad in the inside of surface shape tool deflection. Surface accuracy was obtained better precision in down milling than in up milling.

A Study on the Instantaneous Shear Plane Based Cutting Force Model for End Milling (밀링 작업에서 순간 전단면에 기초한 절삭력 모델에 관한 연구)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.225-260
    • /
    • 2002
  • The purpose of this paper is to further extend the theoretical understanding of the dynamic end milling process and to derive a computational model to predict the milling force components. A comparative assessment of different cutting force models is performed to demonstrate that the instantaneous shear plane based formulation is physically sound and offers the best agreement with experimental results. The procedure for the calculation of the model parameters used in the cutting force model, based on experimental data, has been presented. The validity of the proposed computational model has been experimentally verified through a series of cutting tests.

  • PDF

An Evaluation on Cutting Characteristics in Milling Process with Different Helix Angle Endmills (밀링가공에서 부등각 엔드밀의 절삭특성 평가)

  • 이상복;김원일;왕덕현;김실경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining tolerance. A conventional endmill which all low blades are $30^{\circ}$ helix angles and a different helix angle endmill which the opposite two blades are $30^{\circ}$ and the other opposites are different helix angles were studied. The cutting farce, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type A($25^{\circ}$$30^{\circ}$) appeared to bring the most satisfactory result.

Cutting force prediction in the ball-end milling process of barious cutting area using Z-map (Z map을 이용한 임의의 절삭영역에서 볼엔드밀의 절삭력예측)

  • 김규만;조필주;김병희;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.57-65
    • /
    • 1997
  • In this study, a cutting force in the Ball-end milling process is calculated using Z-map. Z-map can describe any type of cutting area resulting from the previous cutting geometry and cutting condition. Cutting edge of a ball-end mill is divided into infinitesimal cutting edge elements and the position of the ele- ment is projected to the cutter plane normal to the Z axis. Also the cutting area in the cutter plane is obtained by using the Z-map. Comparing this projected position with cutting area, it can be determined whether it engages in the cutting. The cutting force can be calculated by numerical integration of cutting force acting on the engaged cutting edge elements. A series of experiments such as contouring and upward/downward ramp cutting was performed to verify the calculated cutting force.

  • PDF

The Study on the Cutting Force Prediction in the Ball-End Milling Process at the Random Cutting Area using Z-map (Z-map을 이용한 임의의 절삭영역에서의 볼 엔드밀의 절삭력 예측에 관한 연구)

  • 김규만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.125-129
    • /
    • 1996
  • In this study, a method is proposed for the cutting force prediction of Ball-end milling process using Z-map is proposed. Any types of cutting area generated from previous cutting process can be expressed in z-map data. Cutting edge of a ball-end mill is divided into a set of finite cutting edges and the position of this edge is projected to the cross-section plane normal to the Z-axis. Comparing this projected position with Z-map data of cutting area and determining whether it is in the cutting region, total cutting force can be calculated by means of numerical integration. A series of experiments such as side cutting and upward/downard cutting was performet to verify the simulated cutting force.

  • PDF