• Title/Summary/Keyword: End-milling Force

Search Result 217, Processing Time 0.023 seconds

A Study on the Prediction of Temperature Distribution and Machining Force in the Milling Process (밀링가공에서의 온도분포와 절삭력 예측을 위한 연구)

  • 강재훈;송준엽;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.394-397
    • /
    • 2004
  • This paper presents a simple analytic method using 2D simulation program for predications of cutting force and machining temperature in dry type milling process. And also, comparison of cutting force and machining temperature obtained from experiment and simulation work is accomplished to distinguish of suitability.

  • PDF

Assessment of Cutting Ability for CBN Ball End-Milling (금형가공에서의 CBN 공구의 절삭성능평가)

  • Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.4
    • /
    • pp.227-234
    • /
    • 2005
  • In this study an experimental investigation was conducted to assesment of cutting ability for CBN ball end-milling, STD11 and NAK80 materials. The cutting force and surface roughness of the work-pieces were obtained in machining center. The assessment of CBN tools were inspected through the tool dynamotor and SEM. When $30^{\circ}$ negative rake angle, the wear and cutting force were good, surface roughness was better at cutting fluid during CBN cutting.

  • PDF

Study on Control Model Based on Signal Processing In End-Milling Process (엔드밀 공정에서의 신호처리에 따른 제어모델에 관한 연구)

  • 양우석;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.192-196
    • /
    • 2001
  • This work describes the modeling of cutting process for feedback control based on signal processing in end-milling. Here, cutting force is used to design control model by a variety of schemes which are moving average, ensemble average, peak value, root mean square and analog low-pass filtering. It is expected that each model offers its own peculiar advantage in following cutting force control.

  • PDF

Cutting Force Reduction Characteristics by Compounding Electrolytic Machining in Ball End Milling (볼엔드밀 절삭에서 전해복합에 의한 절삭력 저감 특성)

  • 이영표;박규열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.268-273
    • /
    • 2000
  • In this report, a new method compounding the electrolytic machining with ball end milling process to increase the machining efficiency was introduced. And the cutting characteristics by electrolytic machining conditions was examined. From the experimental results, it was confirm-ed that effect of cutting force reduction obtained at the condition of transpassive state of electrolytic machining conditions.

  • PDF

Micro End-milling Technology for Micro Pole Structures (미세 폴 구조물 가공을 위한 마이크로 앤드밀링 기술)

  • Je, Tae-Jin;Choi, Doo-Sun;Lee, Eung-Sug;Hong, Sung-Min;Lee, Jong-Chan;Choi, Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.7-13
    • /
    • 2005
  • In the case of fabricating micro pole structures such as column, square-pole and gear shaft by the micro end-milling process, it can be useful in the fields of industry, for example, micro parts, electrode for electrical discharge machining and micro mold for injection molding. In this study, machining factors and the process were analyzed. Machining experiments of various micro pole configurations were performed. Analysis of the change and effect of the cutting force according to the machining conditions was carried out. An analytical study of the deformation of the micro pole caused cutting conditions and cutting force through the finite element method and ANSYS program was carried out. As a result, this research presented a method of fabricating the column pole of below $100{\mu}m$ diameter with high aspect ratio by using micro end-milling process, and based on that, a method of fabricating a variety of applicable structures. Also the minimum size of the pole capable of fabricating through theory and experiment were demonstrated.

  • PDF

On-line Tool Deflection Compensation System for Precision End-milling (정밀 엔드밀링을 위한 실시간 공구처짐 보정시스템)

  • Yang, Min-Yang;Choe, Jong-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.189-198
    • /
    • 1997
  • This paper presents development of a practical tool deflection compensation system in order to reduce the machining error from the tool deflection compensation system in order to reduce the machining error from the tool deflection in the end-milling process. The devised system is a tool adapter which includes 1-axes force sensor for detecting tool deflection and 2-axes tool tilting device for adjusting tool position through computer interface on line process. Experimental in investigations for typical shaped workpieces representing various end milling situations are performed to verify the ability of the system to suppress the surface errors due to tool deflections. With the system, it is possible to get precise machining surface without any excessive machining error due to increased cutting force in more productive machining conditions.

Mechanical Properties and End-milling Characteristic of AIN-hBN Based Machinable Ceramics (AIN-hBN계 머시너블 세라믹스의 기계적 특성 및 엔드밀링 가공성 평가)

  • Beck, Si-Young;Cho, Myeong-Woo;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • In this study, machining characteristics of AIN-hBN composites were evaluated in end-milling process. As a first step, AIN-hBN composite specimens with various hBN contents were prepared using hot press method. Material properties of the composites, such as relative density, Young's modulus and fracture toughness, were measured and compared. Then, a series of end-milling experinients were performed under various cutting conditions by changing cutting speed, depth-of-cut and feed rate. Cutting force variations were measured using a tool dynamometer during the cutting experiments. Machined surfaces of the specimens were observed using SEM and a surface pro filer to investigate the surface integrity changes. The cutting force decreased with an increases of hBN content. The cutting process was almost impossible for monolithic AIN, owing to severe chipping. In contrast, at high content of hBN, surface damage and chipping decreased, and better surface roughness can be obtained.

Specific Cutting Force Coefficients Modeling of End Milling by Neural Network

  • Lee, Sin-Young;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.622-632
    • /
    • 2000
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on. The cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling processes for various cutting conditions, their mathematical model is important and the model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging forces of cutting tests. In this paper the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in the learning stage as the omitted number of experimental data increase the average errors increase as well.

  • PDF

Development of Improved Cutting Force Model for Indexable End Milling Process. (인덱서블 엔드밀링 공정을 위한 향상된 절삭력 모델의 개발)

  • 김성준;이한울;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.237-240
    • /
    • 2004
  • Indexable end mills, which consist of inserts and cutter body, have been widely used in roughing of parts in the mold industry. The geometry and distribution of inserts on cutter body are determined by application. This paper proposes analytical cutting force model for indexable flat end-milling process. Developed cutting force model uses the cutting-condition-independent cutting force coefficients and considers runout, cutter deflection and size effect for the accurate cutting force prediction. Unlike solid type endmill, the tool geometry of indexable endmill is variable according to the axial position due to the geometry and distribution of inserts on the cutter body. Thus, adaptive algorithm that calculates tool geometry data at arbitrary axial position was developed. Then number of flute, angular position of flute, and uncutchip thickness are calculated. Finally, presented model was validated through some experiments with aluminum workpiece.

  • PDF

A Study on the Prediction of Tool Deflection and Precision Machining in Ball End Milling Process (볼 엔드밀 가공에서의 공구 처짐 예측과 정밀 가공에 관한 연구)

  • 조현덕;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1669-1680
    • /
    • 1992
  • This paper deals with the prediction of cutting force and tool deflection and it's application in the flexible ball end milling process. Machining accuracy is determined by the static stiffness of tool system and the instantaneous cutting force. The static stiffness of tool system consists of the stiffness of holer and the stiffness of ball end mill. The stiffness of holder was obtained from the experimental result, and the stiffness of ball end mill with two flutes was theoretically analyzed by the finite elements method. In cutting process, the instantaneous cutting force is dependent upon the instantaneous feed and pick feed(radial depth of cut) which are varied by tool deflection. For the calculation of cutting force and deflection of ball end mill, iteration method is used with the linear interpolation to the data of cutting force obtained from rigid ball end mill and the data of tool deflection. In this paper, a for enhancing accuracy is discussed. And the selection of helix angle for minimizing machining error is also discussed.