• Title/Summary/Keyword: End-mill tool

Search Result 237, Processing Time 0.024 seconds

Surface Precision due to Change of Cutting Depth and Cutting Location when Ball End Milling (볼엔드밀 가공시 절삭깊이와 가공위치의 변화에 따른 표면정밀도)

  • 박성은;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.274-278
    • /
    • 2000
  • Ball end milling process is widely used in the die and mould manufacturing because of suitableness for the machining of free form surface. But, as ball end mill is long and thin, it is easily deflected by cutting force. In this study, Cutting force, tool deflection and surface precision was measured according to the change of depth and cutting location. Cutting force was acquired with tool dynamometer and a couple of eddy-current sensor measured tool deflection in x-y direction each. After machining, surface precision was measured with roundness tester and coordination measuring machine for sculptured surface angle change and cutting depth.

  • PDF

A Study on the Evaluation of End Mills for High Speed Machining (고속용 엔드밀의 성능평가에 관한 연구)

  • 이정길;유중학;김문기;국정한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.833-837
    • /
    • 2000
  • The purpose of this study is an evaluation of end mills to develop appropriate tools for the high speed machining. First of all, several flat end mills which are produced by different makers are selected to analyze the performances of the tools. Experimental works are also executed to measure cutting force, tool wear and surface roughness for different cutting conditions. And then the results are compared and analyzed for developing optimal cutting tool in the high speed condition. Especially, analysis about tool wear is introduced in this research.

  • PDF

A Study on the Wear Characteristics of the Ball End Mill According to the AlTiN Coated Layers (AlTiN 코팅 층수에 따른 볼 엔드밀의 마모특성에 관한 연구)

  • Cho, Gyu-Jae;Lee, Seung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.54-61
    • /
    • 2010
  • In this research KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, surface roughness, and the wear of tool were studied.

An Experimental Study on the Dimensional Error in Ball End Milling (볼 엔드밀 가공에서 치수오차에 관한 실험적 연구)

  • 심기중;유종선;정진용;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.62-69
    • /
    • 2004
  • This paper presents an experimental study on the dimensional error in ball-end milling. In the 3D free-formed surface machining using ball-end milling, while machining conditions are varied due to the Z component of the feed and existing hemisphere part of the ball-end mill, the mechanics of ball-end milling are complicated. In the finishing, most of cutting is performed the ball part of the cutter and the machined surface are required the high quality. But the dimensional errors in the ball-end milling are inevitably caused by tool deflection, tool wear, thermal effect and machine tool errors and so on. Among these factors, the most significant one of dimensional error is usually known as tool deflection. Tool deflection is related to the instantaneous horizontal cutting force and varied the finishing cutting path. It lead to decrease cutting area, thus resulting cutting forces but the dimensional precision surface could not be obtained. So the machining experiments are conducted fur dimensional error investigation and these results may be used for decrease dimensional errors in practice.

Development of a Tool Life Prediction Program for Increasing Reliability of Cutting Tools (공구의 신뢰성 향상을 위한 수명 예측 프로그램 개발)

  • Kim Bong-Suk;Kang Tae-Han;Kang Jae-Hun;Song Jun-Yeob;Lee Soo-Hun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • The prediction for tool life is one of the most important factors for increasing reliability, stability, and productivity of manufacturing system. This paper deals with a tool life prediction method in view of reliability assessment for cutting tools. In this study, flank wear was focused among multi-factors deciding the tool wear state. First, tool life was predicted by correlation between flank wear and cutting time, based on the extended Taylor tool life equation of turning, including parameters of cutting speed, feed rate, and cutting depth. Second, each of cutting conditions of end-milling was equivalently converted to apply ball end-mill data to the extended Taylor equation. The web-based prediction program for tool life was developed as one of reliability assessment programs for machine tools.

Machining Characteristics in High Speed Endmill Operation Considering Clearance Angle (엔드밀 가공 시 여유각을 고려한 가공특성)

  • 박정남;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.43-49
    • /
    • 2004
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed end milling operation. The tool geometry parameters have complex relationship with cutting process parameter. In order to explain the effect of clearance angle, 2D turning operation in lathe and end milling operations are performed. Tools with different clearance angles are manufactured. Cutting forces, machining accuracy and tool life are examined according to the change of clearance angle. As clearance angle increases, cutting force decreases and machining accuracy improves. But it has been proved that there exists the optimal clearance angle according to the diameter of end mill for maximum tool life which is measured by frank wear.

A Study on Deflection of Tool in Ball-End Milling (볼 엔드밀 가공시 공구변형에 관한 연구)

  • Du, Seung;Seo, Han-Won;Yoo, Ki-Hyun;Seo, Nam-Sub
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.721-724
    • /
    • 2000
  • This paper presents a prediction of tool deflection and resulting machining error fur sculptured surface productions in the ball-end milling process. Due to the different materials and the dimensions of the tool holder and cutter, a cantilever hem model with three uniform sections is proposed fur the tool deflection model. The ability of this model has been verified by a machining experiment. In this study, cutting force and machining error are investigated. This paper provides the prediction of machining error for sculptured surface to improve machining quality for industrial application.

  • PDF