• Title/Summary/Keyword: End-mill tool

Search Result 237, Processing Time 0.028 seconds

Fuzzy Model for controlling of Surface Roughness using End-Mill in Machining (엔드밀을 이용한 기계가공에서 표면거칠기 제어를 위한 퍼지 모델)

  • 김흥배;이우영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.69-73
    • /
    • 2001
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee surface roughness regulation. This paper presents a fuzzy controller which can regulate surface roughness in milling process using end-mill under varying cutting condition. The fuzzy control rules are established from operator experience and expert knowledge about the process dynamics. regulation which increases productivity and tool life is achieved by adjusting feed-rate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted CNC milling machine. The result of experiments show that the proposed fuzzy controller has a good surface roughness regulation capability in spite of the variation of cutting conditions.

  • PDF

금형강의 앤드밀 가공시 동적모델에 의한 절삭력 예측

  • 이기용;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.49-54
    • /
    • 1994
  • A dynamic model for the cutting process in the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model, which uses instantaneous specific cutting force, includes both regenerative effect and penetration effect. The model is verified through comparisons of model predicted cutting force with measured cutting forces obtained from machining experiments.

  • PDF

A Study on Development of Setup Model for Thickness Control in Tandem Cold Rolling Mill (연속냉간압연의 두께제어 모델 개발에 관한 연구)

  • 손준식;김일수;권욱현;최승갑;박철재;이덕만
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.96-103
    • /
    • 2001
  • The quality requirements for thickness accuracy in cold rolling continue to become more stringent, particularly in response to exacting design specification from automotive customers. One of the major impacts from the tighter tolerance level is more unusable product on the head end and tail end of tandem mill coils when the mill is in transition to or from steady state rolling condition. A strip thickness control system for a tandem cold steel rolling mills is composed with blocked non-interacting controller and controllers for strip thickness and tension control of each rolling stands. An intelligent mathematical model included an elastic deformation of strip has been developed and applied to the field in order to predict the rolling force. The simulated results showed that the effect of elastic recovery should be included the model, even if the effect of elastic compression was not important.

  • PDF

A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes

  • Kao, Yung-Chou;Nguyen, Nhu-Tung;Chen, Mau-Sheng;Huang, Shyh-Chour
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.233-247
    • /
    • 2015
  • In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results.

A study on the surface roughness of STD 11 material according to the helix angle of ball endmill (볼 엔드밀의 헬릭스 각도에 따른 STD 11 소재의 표면 거칠기에 관한 연구)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • The ball end mill is a type of cutting tool that is widely used to process complex mold shapes including aspheric surfaces. Unlike the flat end mill in which the cutting edge is formed on the cylindrical handle, the cutting edge is formed from the cylindrical handle to the hemispherical shape, which is advantageous for processing curved shapes. However, since the cutting speed continuously changes during machining due to the helix angle of the cutting edge or the machining inclination angle, it is difficult to obtain a precise machined surface. Therefore, in this paper, machining was performed while changing the helix angle of the ball end mill and the angle of the machining slope under the same cutting conditions for STD 11 material, which is widely used as a mold material. Through this, the effect of the two variables on the roughness of the machined surface was analyzed. As a result, if the helix angle was 0 degrees, it showed the best surface roughness of Ra. 0.16 ㎛. When the helix angle was 20 degrees, the best surface roughness of Ra. 0.18 ㎛ was occurred.

  • PDF

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

Tool Deflection Estimation in Micro Flat End-milling Using Finite Element Method (유한요소법을 이용한 마이크로 평엔드밀링에서의 공구변형 예측)

  • Lim, Jeong-Su;Cho, Hee-Ju;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.498-503
    • /
    • 2010
  • The main purpose of this study strongly concerned micro machining error estimation by using FEM analysis of tool deflection shapes in micro flat end-milling process. For the precision micro flat end-milling process, analysis of micro cutting errors is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Especially, in micro end-milling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. Methods which deal with compensation of cutting error by tool deflection in macro end-milling process have been studied plentifully but, few researches transact with micro scaled cutting tool deflection in micro cutting process. Therefore, the trend of micro tool deflection was estimated by using FEM analysis in this paper. Cutting forces were acquired by micro dynamometer and these were utilized in FEM analysis. In order to verify FEM analysis results, micro machining processes were carried out and real machined profiles were compared with FEM results. Finally through the proposed approach well suited FEM results were obtained.

A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining (평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구)

  • Choi, Sung-Yun;Kwon, Dae-Gyu;Park, In-Su;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.

A Study on the Cutting Force and Machining Error on the Inclined Plane in Ball-end Milling (볼엔드밀에 의한 경사면 가공시 절삭력 및 가공 오차에 관한 연구)

  • Doo, Seung;Hong, Joo-Won;Suh, Nam-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.112-119
    • /
    • 2001
  • In modern manufacturing, many products that have geometrically complicated features, including three-dimensional sculptured surfaces, are being designed and produced to meet various sophisticated functional specifications. The cutting force is required not only for the design of machine and cutting tools, but also for the determination of the cutting conditions for the various machining operations. The ball-end mill is deflected by the cutting force and, the tool deflection is one of the main reasons of the machining errors on a free-form surface. Hence, The cutting force generated in the ball-end milling is the most important property of the machining. The purpose of this study is to find the characteristics of the cutting force in inclined plane and the resultant machining errors in the ball-end milling process. Although the depth of cut is constant in the inclined plane, the cutting force area varies due to the hemisphere of the ball-end mill.

  • PDF

Prediction of Surface Topography by Dynamic Model in High Speed End Milling (고속 엔드밀 가공시 동적 모델에 의한 표면형상 예측)

  • Lee, Gi-Yong;Ha, Geon-Ho;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1681-1688
    • /
    • 2000
  • A dynamic model for the prediction of surface topography in high speed end milling process is developed. In this model the effect of tool runout, tool deflection and spindle vibration were taken in to account. An equivalent diameter of end mill is obtained by finite element method and tool deflection experiment. A modal parameter of machine tool is extracted by using frequency response function. The tool deflection, spindle vibration chip thickness and cutting force were calculated in dynamic cutting condition. The tooth pass is calculated at the current angular position for each point of contact between the tool and the workpiece. The new dynamic model for surface predition are compared with several investigated model. It is shown that new dynamic model is more effective to predict surface topography than other suggested models. In high speed end milling, the tool vibration has more effect on surface topography than the tool deflection.