• Title/Summary/Keyword: End of Initial Driving

Search Result 15, Processing Time 0.024 seconds

Relative Risk Evaluation of Front-to-Rear-End Collision when Drivers Using Electronic Devices: A Simulation Study (추출가능 상황에서 전자기기 사용유형에 따른 상대적 위험성평가: 운전 시뮬레이션 연구)

  • Lee, Se-Won;Lee, Jae-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.104-110
    • /
    • 2009
  • In this driving simulation study, the impairing effects of various types of electronic devices usage(i. e., destination search by using in-vehicle navigation system, TV watching and dialing cellular phone) during driving on front-to-rear-end collision avoidance were investigated. Percentage of collisions, driving speeds when the drivers collided, and initial reaction time for collision avoidance were analyzed and compared as the dependent measures. The results indicated that (1) any types of electronic devices usage during driving induced more serious collision-related impairment than control condition where no additional task was required, and (2) in general, destination search task appeared to impair drivers collision avoidance performance more than the other task requirements in terms of percentage of collisions and initial reaction time for collision avoidance, but TV watching induced most serious collision impact. These results suggested that any types of electronic device usage could distract drivers attention from the primary task of driving, and be resulted in serious outcome in potentially risky situation of front-to-rear-end collision. In particular, mandatory use of eye-hand coordination and receiving feedback seemed to one of essential factor leading the drivers visual attentional distraction.

Estimation of Load-Settlement Curves of Embedded Piles Combining Results of End of Initial Driving and Restrike Dynamic Pile Tests (초기항타 및 재항타 동재하시험 결과를 조합한 매입말뚝의 하중-침하량 곡선 산정)

  • Seo, Mi Jeong;Park, Jong-Bae;Park, Min-Chul;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.15-28
    • /
    • 2020
  • As the skin friction of an embedded pile is produced by the cement paste injected into the borehole, the skin friction cannot be evaluated by the end of initial driving test, which is conducted before the cement paste is cured. In addition, the total resistance of an embedded pile may not be properly evaluated during the restrike test if the base resistance is not fully mobilized because of the insufficient driven energy. The objective of this study is to suggest a new load-settlement curve of embedded piles by combining the results of the end of initial driving and restrike tests. Test piles are installed at fields by using the embedded pile method, and the results of the dynamic pile tests are analyzed using CAse Pile Wave Analysis Program (CAPWAP) after the end of initial driving and restrike tests are conducted. A new load transfer curve, which combines the behaviors of the pile base at the end of initial driving and of the pile shaft at the restrike, is suggested, and a new load-settlement curve is obtained. Subsequently, the resistances of the test piles are evaluated using the combined load-settlement curve, and compared with the results from the end of initial driving and restrike tests. The results showed that the resistances, which are evaluated using the combined load-settlement curve, may overcome the underestimation of the resistance because of the insufficient driven energy. In addition, the resistance resulted from the combined load-settlement curve may be more similar to that from the static load test because the suggested load transfer curve is closer to the behavior of the embedded pile compared to the results of end of initial driving and restrike tests. Therefore, this study demonstrates that the combined load-settlement curve may be effectively used for the evaluation of the bearing capacity of embedded piles.

Design Optimization on End Coupling as a Power Transmission Component for Aluminum Hot Rolling Process (알루미늄 열간 압연공정의 동력 전달용 커플링에 대한 최적화 설계)

  • Lee, Hyun-Seung;Lee, Young-Shin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • The End Coupling is main component of the aluminum hot roll process. The End Coupling is used for transmission of rotational power with heavy-duty load. Fracture of the End Coupling cause serious economic losses because an End Coupling is a very expensive component and it takes a long time to repair it. Therefore, preventing the destruction of the End Coupling is essential for ensuring a long mechanical life cycle. In this paper, the parametric study on the End Coupling was performed in order to minimize maximum stress under operation loads. To verify the interference of spindle assembly with modified End Coupling, kinematics simulation was performed by applying the various combination type and dynamic boundary condition of the spindle assembly. The interference of optimized model was not occurred during combination process and driving process. As a result of an optimum design for life extension on End Coupling, the maximum stress of modified End Coupling was lower than that of the initial model by 26%.

The Effect of Bearing Capacity Increasement for Driven Pile in Silt (실트지반에 타입된 말뚝의 지지력 증가효과)

  • Yeo, Byung Chul;Oh, Se Wook;Bae, Woo Seok;Ahn, Byung Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.19-26
    • /
    • 2003
  • Recently, for the design of pile foundations on the soft ground condition, it is recognized that set-up effects are another important factor which influence the characteristics of bearing capacity of pile. In this paper, the thirteen dynamic pile loading tests were performed at the two different construction sites and the end of initial driving(EOID) were also performed and then restrike tests were performed after certain time lag. The H-pile, pipe pile, PHC pile are installed by driving into the loose silty soil and then restrike tests were performed. Nine days after pile driving, the bearing capacity of H and pipe pile were increased whereas there is not bearing capacity increasement with PHC pile. When the dense silty soil, the restrike test results showed that the bearing capacity of H and pipe pile increased up to 1.17 times. The 1-st and 2-nd restrike tests performed after 6 and 12 day, respectively. The results showed that the bearing capacity of PHC pile was decreased but the bearing capacity of piles were increased up to 1.38 times after 13 days with the third restrike test.

  • PDF

A Biomechanical Analysis in the Neck Injury according to the Position of Read Restraint During Low Speed Rear-End Impacts (저속 정후면 추돌시 머리구속장치 위치에 따른 목 상해에 관한 생체 역학적 연구)

  • Jo Huichang;Kim Youngeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.132-139
    • /
    • 2005
  • The driving position of head restraints and the relative risk of neck injury were studied in the computer simulation. MADYMO human model with the detail neck model was used to define the magnitude and direction of internal forces acting on the cervical spine during rear-end impact and to determine the effect of the initial position of the occupant's head with respect to the head restraints. Maximum reaction forces were generated during the head contact to the restraint and relatively large forces were generated at each spinal components in lower cervical spine in proportion to backset and height distance increasement.

Heat Transfer on a Jet Vane Surface Installed in a Rocket Nozzle (로켓노즐에 장착된 제트베인 표면의 열전달 특성)

  • Yu Man Sun;Cho Hyung Hee;Hwang Ki Young;Bae Ju Chan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • Jet vane is an useful component which is installed at the end of a nozzle for the purpose of the posture control and the secure controlling stability during the initial launching of a rocket. During several seconds from its initial launching moment, the JV driving part is heated due to the direct contact of the vane with the combusted gas and the vane is ablated mechanically or chemically. In this study, as the fundamental study for the thermal analysis of jet vane, the heat transfer into a jet vane which is located in the uniform supersonic flow field is calculated. For this, boundary layer integral method and finite difference method are used simultaneously. Based on the thermal boundary conditions derived from the analysis, the transient heat conduction in the vane is also calculated.

Analysis of Hydraulic Characteristics of Two Solenoid-driven Injectors for CRDi System (2개 솔레노이드 구동방식별 CRDi용 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Lee, Jung-Hyup;Kim, Min-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.140-147
    • /
    • 2011
  • The injection nozzle of an electro-hydraulic injector for the common rail Diesel fuel injection system is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the slenoid actuator was considered as a prime movers in high pressure Diesel injector. Namely a solenoid-driven Diesel injector with different driving current types, as a general method driven by solenoid coil energy, has been applied with a purpose to develop the analysis model of the solenoid actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the solenoid-driven injector, the circuit model has been developed as a unified approach to mechanical modeling in this study. As this analytic results, we know the suction force and first order time lag for driving force can be endowed in solenoid-driven injector in controlling the injection rate. Also it can predict that the input current wave exerted on solenoid coil is the dominant factor which affects on the initial needle behavior of solenoid-driven injector than the hydraulic force generated by the constant injection pressure.

Evaluation of Allowable Bearing Capacity of 600 mm Diameter Preboring PHC Piles Using Dynamic Load Test (직경 600mm PHC 매입말뚝의 동재하시험을 통한 허용 지지력 평가)

  • Woo, Gyu-Seong;Park, Jong-Bae;Seo, Mi-Jeong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.61-72
    • /
    • 2016
  • For the construction of high-rise structures and the optimized foundation design, the use of the large-diameter PHC pile has increased. Especially, the use of the 600 mm diameter PHC pile has significantly increased. In this study, for the evaluation of the suitability of the current design practice, the 46 dynamic pile load tests, which were carried out in the 600 mm diameter preboring PHC pile, are analyzed. The end bearing capacity is obtained from the end of initial driving test and the shaft capacity is estimated from the restrike test. The allowable capacities estimated by the dynamic load test are compared with those based on the current design practice. The analyses show that the allowable end bearing capacity evaluated by the dynamic pile load test is greater than the design practice in most piles. The allowable shaft capacity, however, is smaller than the design practice in many piles. The higher end bearing capacity and the smaller shaft capacity may result from the improvement of the drilling equipment and the increase in the penetration depth. Thus, the portion of the end bearing capacity in the total capacity increases.

The Estimation of Bearing Capacity of Auger-drilled Pile in Sand-Gravel by Dynamic Load Test (동재하시험에 의한 모래자갈층에 근입된 매입말뚝의 지지력 산정)

  • Choi, Ki-Chul;Moon, Yu-Ho;Oh, Won-Keun;Chun, Byung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1819-1826
    • /
    • 2007
  • This study results of performed field load test in order to estimate the best pile length assessment and allowable bearing capacity of the pile foundation. End of initial driving(EOID) and restrike of pile dynamic loading tests were performed to calculate allowable bearing capacity of the experimental pile side and results were compared with the allowable bearing capacity estimated by theory. The results of allowable bearing capacity by EOID test is $1.08{\sim}1.21$ in the range of compared to the capacity calculated by the Structure Foundation Design Criterion. Allowable bearing Capacity by restrike of pile dynamic loading test is $1.32{\sim}1.48$ in the range of compared to the Structure Foundation Design Criterion. The Foundation Design Criterion underestimated the pile capacity. If the bearing capacity calculated by Structure Foundation Design Criterion is 100, EOID of pile dynamic loading test is 116, restrike of pile dynamic loading test is 138 for 20m pile used in this experimental.

  • PDF