• Title/Summary/Keyword: Encryption Algorithms

Search Result 243, Processing Time 0.021 seconds

Efficient and General PVSS Based on ElGamal Encryption

  • Peng, Kun
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.375-388
    • /
    • 2012
  • PVSS stands for publicly verifiable secret sharing. In PVSS, a dealer shares a secret among multiple share holders. He encrypts the shares using the shareholders' encryption algorithms and publicly proves that the encrypted shares are valid. Most of the existing PVSS schemes do not employ an ElGamal encryption to encrypt the shares. Instead, they usually employ other encryption algorithms like a RSA encryption and Paillier encryption. Those encryption algorithms do not support the shareholders' encryption algorithms to employ the same decryption modulus. As a result, PVSS based on those encryption algorithms must employ additional range proofs to guarantee the validity of the shares obtained by the shareholders. Although the shareholders can employ ElGamal encryptions with the same decryption modulus in PVSS such that the range proof can be avoided, there are only two PVSS schemes based on ElGamal encryption. Moreover, the two schemes have their drawbacks. One of them employs a costly repeating-proof mechanism, which needs to repeat the dealer's proof at least scores of times to achieve satisfactory soundness. The other requires that the dealer must know the discrete logarithm of the secret to share and thus weakens the generality and it cannot be employed in many applications. A new PVSS scheme based on an ElGamal encryption is proposed in this paper. It employs the same decryption modulus for all the shareholders' ElGamal encryption algorithms, so it does not need any range proof. Moreover, it is a general PVSS technique without any special limitation. Finally, an encryption-improving technique is proposed to achieve very high efficiency in the new PVSS scheme. It only needs a number of exponentiations in large cyclic groups that are linear in the number of the shareholders, while all the existing PVSS schemes need at least a number of exponentiations in large cyclic groups that are linear in the square of the number of the shareholders.

Toward a New Safer Cybersecurity Posture using RC6 & RSA as Hybrid Crypto-Algorithms with VC Cipher

  • Jenan.S, Alkhonaini;Shuruq.A, Alduraywish;Maria Altaib, Badawi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.164-168
    • /
    • 2023
  • As our community has become increasingly dependent on technology, security has become a bigger concern, which makes it more important and challenging than ever. security can be enhanced with encryption as described in this paper by combining RC6 symmetric cryptographic algorithms with RSA asymmetric algorithms, as well as the Vigenère cipher, to help manage weaknesses of RC6 algorithms by utilizing the speed, security, and effectiveness of asymmetric algorithms with the effectiveness of symmetric algorithm items as well as introducing classical algorithms, which add additional confusion to the decryption process. An analysis of the proposed encryption speed and throughput has been conducted in comparison to a variety of well-known algorithms to demonstrate the effectiveness of each algorithm.

Create a hybrid algorithm by combining Hill and Advanced Encryption Standard Algorithms to Enhance Efficiency of RGB Image Encryption

  • Rania A. Tabeidi;Hanaa F. Morse;Samia M. Masaad;Reem H. Al-shammari;Dalia M. Alsaffar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.129-134
    • /
    • 2023
  • The greatest challenge of this century is the protection of stored and transmitted data over the network. This paper provides a new hybrid algorithm designed based on combination algorithms, in the proposed algorithm combined with Hill and the Advanced Encryption Standard Algorithms, to increase the efficiency of color image encryption and increase the sensitivity of the key to protect the RGB image from Keyes attackers. The proposed algorithm has proven its efficiency in encryption of color images with high security and countering attacks. The strength and efficiency of combination the Hill Chipper and Advanced Encryption Standard Algorithms tested by statical analysis for RGB images histogram and correlation of RGB images before and after encryption using hill cipher and proposed algorithm and also analysis of the secret key and key space to protect the RGB image from Brute force attack. The result of combining Hill and Advanced Encryption Standard Algorithm achieved the ability to cope statistically

Compression-friendly Image Encryption Algorithm Based on Order Relation

  • Ganzorig Gankhuyag;Yoonsik Choe
    • Journal of Internet Technology
    • /
    • v.21 no.4
    • /
    • pp.1013-1024
    • /
    • 2020
  • In this paper, we introduce an image encryption algorithm that can be used in combination with compression algorithms. Existing encryption algorithms focus on either encryption strength or speed without compression, whereas the proposed algorithm improves compression efficiency while ensuring security. Our encryption algorithm decomposes images into pixel values and pixel intensity subsets, and computes the order of permutations. An encrypted image becomes unpredictable after permutation. Order permutation reduces the discontinuity between signals in an image, increasing compression efficiency. The experimental results show that the security strength of the proposed algorithm is similar to that of existing algorithms. Additionally, we tested the algorithm on the JPEG and the JPEG2000 with variable compression ratios. Compared to existing methods applied without encryption, the proposed algorithm significantly increases PSNR and SSIM values.

Incorporating RSA with a New Symmetric-Key Encryption Algorithm to Produce a Hybrid Encryption System

  • Prakash Kuppuswamy;Saeed QY Al Khalidi;Nithya Rekha Sivakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.196-204
    • /
    • 2024
  • The security of data and information using encryption algorithms is becoming increasingly important in today's world of digital data transmission over unsecured wired and wireless communication channels. Hybrid encryption techniques combine both symmetric and asymmetric encryption methods and provide more security than public or private key encryption models. Currently, there are many techniques on the market that use a combination of cryptographic algorithms and claim to provide higher data security. Many hybrid algorithms have failed to satisfy customers in securing data and cannot prevent all types of security threats. To improve the security of digital data, it is essential to develop novel and resilient security systems as it is inevitable in the digital era. The proposed hybrid algorithm is a combination of the well-known RSA algorithm and a simple symmetric key (SSK) algorithm. The aim of this study is to develop a better encryption method using RSA and a newly proposed symmetric SSK algorithm. We believe that the proposed hybrid cryptographic algorithm provides more security and privacy.

An Adaptive Scalable Encryption Scheme for the Layered Architecture of SVC Video (SVC 비디오의 계층적 구조에 적응적인 스케일러블 암호화 기법)

  • Seo, Kwang-Deok;Kim, Jae-Gon;Kim, Jin-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.695-703
    • /
    • 2010
  • In this paper, we propose an adaptive scalable encryption scheme for the layered architecture of SVC video. The proposed method determines an appropriate set of encryption algorithms to be applied for the layers of SVC by considering the importance and priority relationship among the SVC video layers. Unlike the conventional encryption method based on a fixed encryption algorithm for the whole video layers, the proposed method applies differentiated encryption algorithms with different encryption strength the importance of the video layers. Thereupon, higher security could be maintained for the lower video layer including more important data, while lower encryption strength could be applied for the higher video layer with relatively less important data. The effectiveness of the proposed adaptive scalable encryption method is proved by extensive simulations.

A Research on IoT Security Technology based on Blockchain and Lightweight Cryptographic Algorithms

  • Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.343-348
    • /
    • 2023
  • As the IoT market continues to grow, security threats to IoT devices with limited resources are also increasing. However, the application of security technology to the existing system to IoT devices with limited resources is impossible due to the inherent characteristics of IoT devices. Various methods for solving related problems have been studied in existing studies to solve this problem. Therefore, this study analyzes the characteristics of domestic IoT authentication standards and existing research to propose an algorithm that applies blockchain-based authentication and lightweight encryption algorithms to IoT equipment with limited resources. In this study, a key generation method was applied using a Lamport hash-chain and data integrity between IoT devices were provided using a Merkle Tree, and an LEA encryption algorithm was applied using confidentiality in data communication. In the experiment, it was verified that the efficiency is high when the LEA encryption algorithm, which is a lightweight encryption algorithm, is applied to IoT devices with limited resources.

Analysis On Encryption Process In Data For Satellite

  • Bae, Hee-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.216-219
    • /
    • 2008
  • It is necessary to study encryption for protection and safe transmission of the important information. Specially, the security in satellite data is also getting more and more important. This paper introduces DES and TDES algorithm, studies how to apply to satellite data with those algorithms and process of encryption and decryption for satellite data. Proposed encryption process in this paper will be utilized in satellite data for encryption in many satellites.

  • PDF

Design and Implementation of HDFS Data Encryption Scheme Using ARIA Algorithms on Hadoop (하둡 상에서 ARIA 알고리즘을 이용한 HDFS 데이터 암호화 기법의 설계 및 구현)

  • Song, Youngho;Shin, YoungSung;Chang, Jae-Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.2
    • /
    • pp.33-40
    • /
    • 2016
  • Due to the growth of social network systems (SNS), big data are realized and Hadoop was developed as a distributed platform for analyzing big data. Enterprises analyze data containing users' sensitive information by using Hadoop and utilize them for marketing. Therefore, researches on data encryption have been done to protect the leakage of sensitive data stored in Hadoop. However, the existing researches support only the AES encryption algorithm, the international standard of data encryption. Meanwhile, Korean government choose ARIA algorithm as a standard data encryption one. In this paper, we propose a HDFS data encryption scheme using ARIA algorithms on Hadoop. First, the proposed scheme provide a HDFS block splitting component which performs ARIA encryption and decryption under the distributed computing environment of Hadoop. Second, the proposed scheme also provide a variable-length data processing component which performs encryption and decryption by adding dummy data, in case when the last block of data does not contains 128 bit data. Finally, we show from performance analysis that our proposed scheme can be effectively used for both text string processing applications and science data analysis applications.

A Novel Cryptosystem Based on Steganography and Automata Technique for Searchable Encryption

  • Truong, Nguyen Huy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2258-2274
    • /
    • 2020
  • In this paper we first propose a new cryptosystem based on our data hiding scheme (2,9,8) introduced in 2019 with high security, where encrypting and hiding are done at once, the ciphertext does not depend on the input image size as existing hybrid techniques of cryptography and steganography. We then exploit our automata approach presented in 2019 to design two algorithms for exact and approximate pattern matching on secret data encrypted by our cryptosystem. Theoretical analyses remark that these algorithms both have O(n) time complexity in the worst case, where for the approximate algorithm, we assume that it uses ⌈(1-ε)m)⌉ processors, where ε, m and n are the error of our string similarity measure and lengths of the pattern and secret data, respectively. In searchable encryption, our cryptosystem is used by users and our pattern matching algorithms are performed by cloud providers.