• Title/Summary/Keyword: EnCo

Search Result 294, Processing Time 0.023 seconds

Chronic Effect Exposed to Carbon Dioxide in Benthic Environment with Marine Invertebrates Copepod(Tisbe sp.) and Amphipod(Monocorophium acherusicum) (저서환경에서 이산화탄소 노출에 따른 국내산 해산무척추동물 요각류(Tisbe sp.)와 단각류(Monocorophium acherusicum)의 만성영향)

  • Moon, Seong-Dae;Choi, Tae Seob;Sung, Chan-Gyoung;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.359-369
    • /
    • 2013
  • Chronic effects such as reproduction and population dynamics with elevated $CO_2$ concentration were evaluated using two representative marine benthic species, copepod (Tisbe sp.) and amphipod (Monocorophium acherusicum) adopting long-term exposure. Juvenile copepod and amphipod individuals were cultivated in the seawater equilibrated with control air (0.395 mmol $CO_2$/air mol) and high $CO_2$ air having 0.998, to 3.03, 10.3, and 30.1 mmol $CO_2$/air mol during 20 and 46 days, respectively. After the exposure period, the number of benthic invertebrate was counted with separate larval and juvenile stage such as naupliar, copepodid and adult for copepod, or neonate and adult for amphipod, respectively. The individual number of both test species at each life-stage was significantly decreased in seawater with 10.3 mmol $CO_2$/air mol or higher. Recently, the technology of marine $CO_2$ sequestration has been developed for the reduction of $CO_2$ emission, which may cause climate change. However, under various scenarios of $CO_2$ leaks during the injection process or sequestrated $CO_2$ in marine geological structure, the potential risk to organism including various invertebrates can be expected to exposure. So the results of this study suggested that the detailed consideration on the adverse effect with marine ecosystem can be prerequisite for the marine $CO_2$ sequestration projects.

Kinetics and Stereochemistry for the Aquation of trans-$[Co(en)(tmd)Cl_2]^+$Cation (Trans-$[Co(en)(tmd)Cl_2]^+$ 錯이온의 水化反應에 對한 反應速度와 立體化學)

  • Jeong, Jong-Jae;Roh, Byung-Gil;Kim, Eun-Ki;Oh, Sang-Oh
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.607-611
    • /
    • 1991
  • The stereochemical ratio cis and trans isomer of the hydration reaction of trans-$[Co(en)(tmd)Cl_2]^+$ complex ion were studied with varing temperature by the spectrophotometric method. It was observed that the ratio of cis-isomer was about 30%, and the intermediate was rearranged. And in order to investigate this mechanism more clearly, stability energy profile, interaction diagram and orbital correlation diagram were calculated by the EHT method. By the calculation, the mechanism of cis-isomer was in good agreement with the experimental results, and it was estimated that the hydration reaction was carried through some distorted square pyramid (sp).

  • PDF

Influence of Heavy Metals, Ammonia, and Organotin Compounds on the Survival of Arkshell Clams, Scapharca broughtonii (중금속, 암모니아, 유기주석화합물이 피조개 (Scapharca broughtonii) 의 생존에 미치는 영향)

  • Kim, Chan-Kook;Kim, Dong-Hoon;Lee, Jung-Suk;Lee, Kyu-Tae
    • The Korean Journal of Malacology
    • /
    • v.20 no.1
    • /
    • pp.93-105
    • /
    • 2004
  • Arkshell clams, Scapharca broughtonii, are economically important edible bivalves and widely cultivated in the Southern coast of Korea. Recently, the production of S. broughtonii has been dramatically decreased and various reasons including chemical pollution were suspected to be related to the production declines. However, it remains unknown whether the chemical pollution levels of the surrounding environments were high enough for the biological and ecological disturbance for the population of S. broughtonii, because no systematic toxicological study using S. broughtonii has been conducted previously. In the present study, we exposed arkshell clams, S. broughtonii to various waterborne pollutants including heavy metals (Cd, Cu and Hg), ammonia and organotins (tributyltin and triphenyltin) to determine the effect concentrations of these pollutants for the survival of S. broughtonii for 20 days. The median lethal concentrations ($LC_50$) of S. broughtonii were 2.1 mg/l for Cd, 0.065 mg/l for Cu, 0.40 mg/l for Hg, 79.4 mg/l for total ammonia (1.9 mg/l for unionized ammonia), 0.5 ${\mu}$g/l for TBT, and 14${\mu}$g/l for TPhT. Lethal toxicity of the most pollutants increased with both exposure duration and concentration. The toxicity of TBT was greatest for S. broughtonii, followed by TPhT > Cu > Hg > Cd > ammonia. The sensitivities of S. broughtonii to heavy metals and TBT were comparable to those of other aquatic organisms, but they were relatively tolerable to ammonia. The environmental concentrations of the tested pollutants were compared with the effect concentrations of those for the survival of S. broughtonii to assess the potential risks of the pollutants in the field conditions.

  • PDF

Synthesis of 58Ni Target and Co Diffused Rh Composite for Application of Mössbauer Source (뫼스바우어선원 적용을 위한 58Ni 표적체 및 Co가 확산된 Rh복합재 제조)

  • Uhm, Young Rang;Choi, Sang Mu;Kim, Jong-bum;Son, Kwang Jae
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.432-437
    • /
    • 2015
  • The en-riched $^{58}Ni$ powders are dissolved in acid solution and coated on a Cu target for proton irradiation at cyclotron to produce $^{57}Co$ radioisotope. The condition of the plating bath and the coating process are determined using the en-riched powders. To establish the coating conditions for $^{57}Co$, non-radioactive Co ions are dissolved in an acid solution and electroplated on to a rhodium plate. The thermal diffusion of electroplated Co into a rhodium matrix was studied to apply a $^{57}Co$ Mssbauer source. The diffusion depth from surface to matrix of Co is depended on the annealing temperature and time. The deposited Co atoms diffuse completely into a rhodium (Rh) matrix without substantial loss at an annealing temperature of 1200 for 4 hours.

Influence of Increased Carbon Dioxide Concentration on the Bioluminescence and Cell Density of Marine Bacteria Vibrio fischeri (이산화탄소 농도 증가에 따른 발광미생물의 상대발광량과 밀도변화에 대한 연구)

  • Sung, Chan-Gyoung;Moom, Seong-Dae;Kim, Hye-Jin;Choi, Tae-Seob;Lee, Kyu-Tae;Lee, Jung-Suk;Kang, Seong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • An experiment was conducted to evaluate the biologically adverse effect of increased carbon dioxide in seawater on marine bacteria, Vibrio fischeri. We measured the bioluminescence and cell density at every 6 hours for 24 hours of the whole incubation period after exposing test microbes to a range of $CO_2$ concentration such as 380(Control), 1,000, 3,000, 10,000 and 30,000 ppm, respectively. Significant effect on relative luminescence(RLU) of V. fischeri was observed in treatments with $CO_2$ concentration higher than 3,000 ppm at t=12 h. However, the difference of RLU among treatments significantly decreased with the incubation time until t=24 h. Similar trend was observed for the variation of cell density, which was measured as optical density using spectrophotometer. The results showed that a significant relationship between $CO_2$ concentration and bioluminescence of test microbes was observed for the mean time. However, the inhibition of relative bioluminescence and also cell density could be recovered at the concentration levels higher than 3,000 ppm. The dissolved $CO_2$ can be absorbed directly by cell and it can decrease the intracellular pH. Our results implied that microbes might be adversely affected at the initial growing phase by increased $CO_2$. However, they could adapt by increasing ion transport including bicarbonate and then could make their pH back to normal level. Results of this study could be supported to understand the possible influence on marine bacteria by atmospheric increase of $CO_2$ in near future and also by released $CO_2$ during the marine $CO_2$ sequestration activity.

Influence of the Increase of Dissolved $CO_2$ Concentration on the Marine Organisms and Ecosystems (해수중 용존 $CO_2$ 농도 증가가 해양생물 및 해양생태계에 미치는 영향: 국내외 사례 연구)

  • Lee, Jung-Suk;Lee, Kyu-Tae;Kim, Chan-Kook;Park, Gun-Ho;Lee, Jong-Hyeon;Park, Young-Gyu;Gang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.243-252
    • /
    • 2006
  • Influence of the increasing carbon dioxide concentration in seawater on various marine organisms is assessed in this article with regard to the impacts of anthropogenic $CO_2$ introduced into surface or deep oceans. Recent proposals to sequester $CO_2$ in deep oceans arouse the concerns of adverse effects of increased $CO_2$ concentration on deep-sea organisms. Atmospheric introduction of $CO_2$ into the ocean can also acidify the surface water, thereby the population of some sensitive organisms including coral reefs, cocolithophorids and sea urchins will be reduced considerably in near future (e.g. in 2100 unless the increasing trend of $CO_2$ emission is actively regulated). We exposed bioluminescent bacteria and benthic amphipods to varying concentrations of $CO_2$ and also pH for a short period. The ${\sim}l.5$ unit decrease of pH adversely affected test organisms. However, amphipods were not influenced by decreasing pH when HCl was used for the seawater acidification. In this article, we reviewed the biological adverse effects of $CO_2$ on various marine organisms studied so for. Theses results will be useful to predict the potential risks of the increase of $CO_2$ concentrations in seawater due to the increase of atmospheric $CO_2$ emission and/or sequestration of $CO_2$ in deep oceans.

  • PDF

Effects of Cu, Cd, Fenbendazole and Sulfathiazole on the Survival of the Korean Fairy Shrimp Branchinella kugenumaensis (구리, 카드뮴, 펜벤다졸, 설파티아졸이 국내산 풍년새우 생존에 미치는 영향)

  • Moon, Seong-Dae;Cho, Chang-Hyun;Kwak, Inn-Sil;Lee, Chang-Hoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.4
    • /
    • pp.311-320
    • /
    • 2009
  • The short term (24-hr) and long term (21 days) effects of copper, cadmium, fenbendazole and sulfathiazole on the survival of the Korean fairy shrimp Branchinella kugenumaensis were evaluated. The 24-hr median lethal concentrations ($LC_{50}$) of copper, cadmium, fenbendazole, and sulfathiazole were 39, 512, 182, and 31,818 ${\mu}g/L$, respectively. The toxicity of copper is highest among 4 chemicals used in this study, while sulfathazole the lowest. After the long term (21 days) exposure experiment, the $LC_{50}$ copper, cadmium, fenbendazole, and sulfathiazole were 1.12, 2.1, 0.1, 6.6 ${\mu}g/L$, respectively. The long term effects of antibiotics were highly enhanced while the short-term effects were not strong. The sensitivities of B. kugenumaensis to copper and cadmium were higher than or comparable to those of other freshwater branchiopods (Streptocephalus spp., Thamnocephalus sp.), and far higher than the marine species (Artemia sp.). There were significant effects on the survival of B. kugenumaensis after long term exposure to relatively lower concentrations of copper, cadmium, fenbendazole and sulfathiazole. Therefore, B. kugenumaensis seems quite a good candidate species for the ecotoxicological assessments of freshwater environments.

Influence of Temperature on the Survival, Growth and Sensitivity of Benthic Amphipods, Mandibulophoxus mai and Monocorophium acherusicum (국내산저서단각류 Mandibulophoxus mai와 Monocorophium acherusicum의 생존, 성장 및 민감도에 대한 온도의 영향)

  • Lee Kyu-Tae;Lee Jung-Suk;Kim Dong-Hoon;Kim Chan-Kook;Park Kun-Ho;Kang Seong-Gil;Park Gyung-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • A series of experiments was conducted to evaluate the effects of temperature on the survival, growth and sensitivity of the benthic amphipods, Mandibuluphoxus mai and Monocnrophium acherusicum, which have been recently developed as new sediment toxicity testing species in Korea. The biological performance for each amphipod species was determined by the survival and growth rates at different water temperatures. The influence of temperature on the sensitivity to reference toxicant, Cd, was determined by the comparison of survival rates of amphipods exposed to control and Cd-spiked seawater at different temperatures. Temperature significantly influenced on the survival, growth and Cd sensitivity of both amphipods. Tolerable ranges of temperature for the >80% individuals of both M. mai and M. acherusicum with sediment substrates were mostly overlapped (13 to 22℃). The daily growth rates of M. mai and M. acherkisicum increased proportionally with temperature up to 20℃ and 25℃. respectively. Similarly, the sensitivities of M. mai and M. acheyusicum to Cd increased with temperature up to 20℃ and 15℃, respectively. Overall results showed that temperature is a substantially important factor potentially influencing the results of lethal and sublethal bioassays using the amphipods. Therefore, defining the adequate ranges of experimental temperature for the toxicity testing species is the pre-requisite for the development of standardized bioassay protocols.

  • PDF

Effect on Early Life Stage of Three Freshwater Fish (Carassius auratus, Cyprinus carpio, Oryzias latipes) Exposed to Suspended Solids (부유토사가 담수 어류 3종(붕어, 잉어, 송사리)의 초기 생활사에 미치는 영향)

  • Moon, Seong-Dae;Kang, Sin-Kil;Lee, Chang-Hoon;Sung, Chan-Gyoung;An, Kwang-Guk;Choi, Tae Seob
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.82-90
    • /
    • 2014
  • To assess the adverse effects of suspended solids on fishes, the hatching rate of embryo, and survival and growth of larvae were measured with common fish species of river such as crusian carp (Carassius auratus), common carp (Cyprinus carpio) and medaka (Oryzias latipes). Bioassay on hatching rate of embryo was conducted with a range of turbidity as 10 levels from 0.2 to 8,080 NTU. Another bioassay on 4-day larval survival and 21-day larval growth were also conducted with a range of turbidity as 8 levels from 0.1 to 8,260 NTU, and 6 levels from 0.7 to 2,030 NTU, respectively. The hatching rate of C. auratus was not significantly different from that of control at turbidity below 4,040 NTU, whereas it decreased when turbidity was 8,080 NTU (p<0.05). The hatching rate of C. carpio was not affected by concentration of suspended solids. For O. latipes, the hatching rate significantly decreased from 254 NTU (p<0.001) and it was zero when turbidity was 8,080 NTU. The 4-day survival of larvae of all 3 species was not affected by turbidity, while the larval growth of all 3 species was significantly affected. The turbidity effect on the growth of C. auratus and C. carpio was observed from 7 days after the exposure at turbidity level of 145, 143 NTU, respectively. The turbidity effect on the growth of O. latipes was observed from 14 days after the exposure at turbidity level of 254 NTU. The results of this study will provide the basic information for the derivation of water quality criteria on suspended solids for the protection of aquatic ecosystem and the quantitative ecological risk assessment of freshwater environment.