• Title/Summary/Keyword: Emulsion Polymerization

Search Result 238, Processing Time 0.022 seconds

Preparation and Characterization of Novel Temperature and pH Sensitive (NIPAM-co-MAA) Polymer Microgels and Their Volume Phase Change with Various Salts (pH 감응성 NIPAM-co-MAA 고분자 마이크로젤의 제조 및 분석과 염 종류에 따른 부피상 변화)

  • Khan, Mohammad Saleem;Khan, Gul Tiaz;Khan, Abbas;Sultana, Sabiha
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.794-801
    • /
    • 2013
  • Novel microgels of N-isopropylacrylamide (NIPAM)-co-methacrylic acid (MAA) (NIPAM-co-MAA) with different contents of N,N-methylene bis acrylamide (MBA) were prepared by emulsion polymerization technique and were studied by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and zeta potential measurement. Effect of pH, temperature and different salts concentration on the microgel particles was investigated. DLS results have shown that the hydrodynamic radius of the microgel increased upon increasing pH and decreased upon increasing temperature. The swelling/deswelling behaviors as determined by DLS showed the ionic repulsions of the carboxyl group of the methacrylic acid and hydrophobic interaction of NIPAM. The effect of various salts on volume phase transition temperature (VPTT) was also investigated. Upon increasing salt concentration, VPTT became broad and shifted to a lower temperature. Electrophoretic mobility measurements showed an increase with increasing pH and temperature at a constant ionic strength.

Synthesis of Monodispersed Magnetic Polymer Particle (균일한 자성 고분자 입자의 합성)

  • Ahn, Byung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.316-321
    • /
    • 2008
  • Monodispersed particles of poly(styrene-co-4-vinylpyridine), poly(st-co-4vp) were prepared by soapless emulsion polymerization. Iron oxide was formed on the surface and inside of the poly(st-co-4vp) particles by thermal decompostion of iron pentacarbonyl. The obtained magnetic poly(st-co-4vp) particles was mondispersed and the average size was 250 nm. The magnetic poly(st-co-4vp) particles had 14% of iron oxide, which was identified as $Fe_3O_4$ by XRD. The magnetic poly(st-co-4vp) particles had superparamagnetism according to superconducting susceptometer (SQUID).

Study on the Preparation of Alginic Acid-PMMA Graft Polymer and the Surface Modification of Montmorillonite with the Graft Polymer (Alginic Acid-PMMA Graft Polymer의 합성 및 이를 Coupling제로 한 Montmorillonite 표면의 개질화에 관한 연구)

  • 손차호;김경환;박천욱
    • Textile Coloration and Finishing
    • /
    • v.4 no.4
    • /
    • pp.81-89
    • /
    • 1992
  • Graft polymers of alginic acid-PMMA, different in composition and Mv of branched PMMA, were prepared by emulsion graft polymerization at various MMA concentrations. In aqueous dispersion solution, the adsorption of graft polymer on the montmorillonite was carried out to modify the surface property of powder, and the adsorption of PMMA in organic solvents (acetone, benzene) on the modified surface of powder were observed. The results obtained were as follows. 1. In emulsion graft polymerization of MMA on the sodium alginate in aqueous solution, SA conversion, MMA conversion and % grafting were increased with increasing MMA concentration where as graft efficiency was decreased. 2. The adsorption amount of graft polymer was increased with the elevation of temperature and the increased of dispersion concentration and with the increase of branched PMMA composition of graft polymer. 3. In organic solvent, the adsorption of PMMA on the surface modified particle was proceeded by the orientation along the stretched branched PMMA of adsorbed graft polymer which is in radial direction to the particle surface. 4. The adsorbed amount of PMMA was increased as the temperature and concentration of PMMA solution, the branching of adsorbed graft polymer and the solvency of solvent were increased.

  • PDF

A Study on the Preparation of NBR/Polypyrrole Conducting Composites and Their Electrical Properties (Poly(acrylonitrile-co-butadiene) Rubber/Polypyrrole 전도성 복합체의 제조와 전기적 성질에 관한 연구)

  • Jung, Mi-Ok;Huh, Yong-Il;Lee, Wan-Jin
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.188-195
    • /
    • 2000
  • The conducting composites were prepared by emulsion polymerization with poly (acrylonitrile-co-butadiene) (NBR) as a matrix and polypyrrole (PPY) as a conducting polymer. Among several surfactants, the electrical conductivity of the composite which was polymerized by dodecyl sodium sulfate (DSS) was the best. The film of composite was prepared by compression molding. The electrical conductivity was measured by 4 probes method as a function of PPY and temperature. When the content of PPY was 25 wt%, the electrical conductivity of composite was increased up to 1.17 S/cm. The percolation threshold showed at the vicinity of 15 wt% PPY content.

  • PDF

A Study on the Size Control of Nanosized Polystyrene (폴리스타일렌 나노입자의 입도 조절에 관한 연구)

  • Tan, Ming Ning;Park, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.444-446
    • /
    • 2011
  • Nanosized polystyrene (PS) particles with the narrow size distribution were synthesized from styrene monomer at the presence of the surfactant (polyvinylpyrrolidone, PVP), the solvent of 95 % alcohol, and the initiator of benzoyl peroxide (BPO). Since the emulsion polymerization method was applied, many factors could have effects on the size of PS particles during polymeric process. Aside from the concentration of monomer, surfactant and initiator, the factors such as the stirring speed and the ultrasonic radiation were mainly studied. By adjusting the radiating time, PS particles with their size of about 400 nm were synthesized.

Preparation of MWCNTs/Poly(methyl methacrylate) Composite Particles via the Emulsion Polymerization of Methyl Methacrylate Using MWCNTs Modified by Silanization Reaction and Their Morphological Characteristics (실란화 반응으로 표면 개질된 다중벽 탄소나노튜브(MWCNTs)와 Methyl Methacrylate의 유화중합을 통한 MWCNTs/Poly(methyl methacrylate) 복합 입자 제조 및 그 형태학적 특성)

  • Kwon, Jaebeom;Park, Seonghwan;Kim, Sunghoon;Jo, Jieun;Han, Changwoo;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.329-337
    • /
    • 2015
  • In this study, multi-walled carbon nanotubes (MWCNTs) were oxidized with a mixture of nitric acid and sulfuric acid. After oxidation, oxidized MWCNTs were treated with thionyl chloride ($SOCl_2$) and 1,4-butanediol (BD) in sequence at room temperature to introduce hydroxyl groups on the surface of MWCNTs. The prepared MWCNT-OH was silanized with 3-methacryloxypropyltrimethoxylsilane (MPTMS) to make MWCNT-MPTMS. The MWCNT-MPTMS was used as fillers in emulsion polymerization to make MWCNT-MPTMS/PMMA composite particles with 3 kinds of emulsifiers, hexadecyltrimethylammoniumbromide (CTAB) as a cationic, sodium dodecylbenzene sulfonate (SDBS) as an anionic and polyethylene glycol tert-octylphenyl ether (Triton X-114) as a nonionic emulsifier. Morphologies of composite emulsions were confirmed by a particle size analyzer (PSA) and a scanning electron microscope (SEM). Morphologies of emulsion polymerized MWCNT-MPTMS/PMMA with SDBS showed more uniform particle size distribution compared to those of other two emulsifiers used emulsions. MWCNT-MPTMS/PMMA showed $3.4^{\circ}C$ higher $T_g$ compared to pristine MWCNT/PMMA due to covalent bond formation at interface of MWCNT-MPTMS and PMMA.

[Retraction] Preparation of Methyl methacrylate/styrene Core-shell Latex by Emulsion Polymerization ([논문 철회] 유화중합에 의한 Methyl methacrylate/styrene계 Core-shell 라텍스 입자 제조에 관한 연구)

  • Kang, Don-O;Lee, Nae-Woo;Seul, Soo-Duk;Lee, Sun-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2002
  • Core-shell polymers of methyl methacrylate/styrene pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) as an initiator. The characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, where as polymer blonds or copolymers show a combined properties from the physical properties or two homopolymers. This unique behavior of core-shell composite latex can be used in many industrial fields. However, in preparation of core-shell composite latex, several unexpected phenomina are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, we studied the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the tore-shell structure or PMMA/PSt and PSt/PMMA. Particle size and particle size distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass transition temperature($T_g$) was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions were measured.

Adhesive Properties of Acrylic Emulsion Pressure Sensitive Adhesives with Polymeric Emulsifier (고분자 유화제를 이용한 수성 아크릴 에멀션 점착제의 접착 물성)

  • 박명철;이명천
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.596-602
    • /
    • 2003
  • A Polymeric emulsifier was synthesized by solution polymerization with 2-ethylhexyl acrylate, n-butyl acrylate, and acrylic acid. A series of polymeric emulsifier have been used in the emulsion copolymerization of 2-ethylhexyl actryacrylate and n-butyl acrylate. The size of the synthesized latex particles was around 145 nm and its distribution was very narrow. Emulsion with polymeric emusifier showed no coagulum after 7 cycles of freeze-thaw test, while the emulsion with traditional emulsifier exhibited coagulum after 2 cycles. The adhesion tests showed that the initial tackiness and peel strength decreased as the molecular weight and acrylic acid content of polymeric emulsifier increased, whereas the holding power increased.

Characterization of Core/Shell PMMA/CdS Nanoparticles Synthesized by Surfactant-free Emulsion Polymerization (무유화 유화중합에 의해 합성된 Core/shell 형태 PMMA/CdS 나노입자의 특성분석)

  • Yoon, Hyojung;Rhym, Young-Mok;Shim, Sang Eun
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.188-192
    • /
    • 2012
  • Herein, CdS-coated PMMA nanoparticles were prepared by in-situ surfactant-free emulsion copolymerization and subsequent CdS coating process. As-prepared CdS/PMMA hybrid particles had 201.7 nm in diameter. The amount of CdS nanocrystals in the hybrid particles was 10.37 wt% determined by TGA and elemental analysis. The size of CdS crystals was 3.55 nm preferentially grown in (111) plane. UV-vis spectrum of PMMA/CdS nanoparticles showed the significant blue-shift in optical illumination. The reason was found because the synthesized CdS nanocrystals on PMMA particles had a different band gap energy of 2.70 eV which was significantly higher than that of known-value of bulk CdS (2.41 eV) due to a quantum confinement effect.

Synthesis of Environmental-Friendly Starch-acrylic Coating Sols by Emulsion Polymerization (유화중합에 의한 친환경 전분-아크릴 코팅졸의 합성)

  • Li, Mei-Chun;Mun, Yoo-Ju;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.272-279
    • /
    • 2010
  • Starch is an environmental-friendly natural source, more interests are attracted to use starch for synthesis of composites and coating sols. Starch-acrylic coating sols for architectural materials were synthesized by emulsion polymerization. The structures of synthesized materials were characterized by using Infrared spectra, $^1H$-NMR spectra, and physical characteristics were investigated by X-ray diffraction, foaming test, whiteness test, gloss test and tensile strength test. XRD results showed that starch in starch-acrylic copolymer matrix was in an amorphous state. Starch-acrylic emulsion was compounded with 1%, 3%, 5% foaming agent (n-pentane) and 60% $CaCO_3$ solution. The results showed that starch and foaming agent could increase the foamability. Tensile strength increased with the enhancement of starch and foaming agent concentration. But whiteness and gloss decreased with increase of starch and foaming agent concentration.