• 제목/요약/키워드: Employee Turnover Prediction

검색결과 3건 처리시간 0.018초

XGBoost와 SHAP 기법을 활용한 근로자 이직 예측에 관한 연구 (A Study on the Employee Turnover Prediction using XGBoost and SHAP)

  • 이재준;이유린;임도현;안현철
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권4호
    • /
    • pp.21-42
    • /
    • 2021
  • Purpose In order for companies to continue to grow, they should properly manage human resources, which are the core of corporate competitiveness. Employee turnover means the loss of talent in the workforce. When an employee voluntarily leaves his or her company, it will lose hiring and training cost and lead to the withdrawal of key personnel and new costs to train a new employee. From an employee's viewpoint, moving to another company is also risky because it can be time consuming and costly. Therefore, in order to reduce the social and economic costs caused by employee turnover, it is necessary to accurately predict employee turnover intention, identify the factors affecting employee turnover, and manage them appropriately in the company. Design/methodology/approach Prior studies have mainly used logistic regression and decision trees, which have explanatory power but poor predictive accuracy. In order to develop a more accurate prediction model, XGBoost is proposed as the classification technique. Then, to compensate for the lack of explainability, SHAP, one of the XAI techniques, is applied. As a result, the prediction accuracy of the proposed model is improved compared to the conventional methods such as LOGIT and Decision Trees. By applying SHAP to the proposed model, the factors affecting the overall employee turnover intention as well as a specific sample's turnover intention are identified. Findings Experimental results show that the prediction accuracy of XGBoost is superior to that of logistic regression and decision trees. Using SHAP, we find that jobseeking, annuity, eng_test, comm_temp, seti_dev, seti_money, equl_ablt, and sati_safe significantly affect overall employee turnover intention. In addition, it is confirmed that the factors affecting an individual's turnover intention are more diverse. Our research findings imply that companies should adopt a personalized approach for each employee in order to effectively prevent his or her turnover.

대형 언어 모델을 활용한 기업데이터 분석: ChatGPT를 활용한 직원 이직 예측 (Leveraging LLMs for Corporate Data Analysis: Employee Turnover Prediction with ChatGPT)

  • 김성민;정지용
    • 지식경영연구
    • /
    • 제25권2호
    • /
    • pp.19-47
    • /
    • 2024
  • 기업의 데이터 분석 및 활용 역량은 전사 차원의 지식경영과 의사결정에 중요한 역할을 한다. 이 연구는 대형 언어 모델이 기업데이터 분석에서 어떻게 활용될 수 있는지 알아보고자 수행되었다. 구체적으로 인적자원 분야에 초점을 맞추어, 대형 언어 모델의 데이터 분석 역량을 검증해 보았다. 이를 위해 인사분야에서 많은 연구가 이루어져온 공개데이터셋 IBM HR 데이터를 소재로, 선행연구들에서 이루어진 머신러닝 기반 이직자 예측 분석을 ChatGPT를 통해 재현하고 그 예측성능을 비교해보았다. 고급 프로그래밍 역량이 필요했던 과거 연구방식과 달리, 분석가의 자연어 요청으로 진행한 ChatGPT 기반 머신러닝 데이터 분석은 훨씬 쉽고 빠르다는 장점이 있었고, 예측 정확도 역시 선행연구와 비교해 경쟁력 있는 수준을 기록했다. 이는 그동안 고급 프로그래밍 역량이 요구되던 기업데이터 분석 분야에서, ChatGPT를 비롯한 대형 언어 모델들이 효과적이고 실질적인 대안이 될 수 있다는 가능성을 시사한다. 또한 이를 통해 데이터 분석의 대중화 나아가 데이터 기반 의사결정(DDDM: Data-Driven Decision Making)의 확산에도 기여할 수 있을 것으로 기대된다. 데이터분석 과정에서 사용한 프롬프트와 ChatGPT가 생성한 프로그래밍 코드도 부록에 수록하여 검증 가능하게 함으로써, 향후 대형 언어 모델을 활용한 데이터분석 연구의 초석을 제공하고자 한다.

데이터 마이닝 기법을 활용한 근로자의 고용유지 강화 방안 개발 (Enhancing Workers' Job Tenure Using Directions Derived from Data Mining Techniques)

  • 안민욱;김태운;유동희
    • 한국콘텐츠학회논문지
    • /
    • 제18권5호
    • /
    • pp.265-279
    • /
    • 2018
  • 본 연구에서는 데이터 마이닝 기법을 활용하여 근로자의 이직준비 여부에 관한 예측모형을 구축하는 실험을 진행하였다. 이를 위해, 한국고용정보원 주관으로 수집된 "2015년 대졸자 직업 이동경로조사" 데이터를 사용하였다. 이직준비 여부 예측모형에는 의사결정나무, 베이즈넷, 인공신경망 알고리즘이 사용되었다. 전체 직종을 대상으로 한 분석에서는 의사결정나무 기반 예측모형에서 최고 예측률을 기록하였으며, 이직준비 여부에 영향을 주는 요인은 '근로시간 형태', '종사상 지위', '정규직 여부', '주당 정규 근로시간', '주당 정규 근로일', '개인의 발전가능성'으로 나타났다. 의사결정나무 기반 예측모형의 결과를 활용하여 근로자 전반에 관한 12개의 이직준비 여부 규칙을 최종 도출하였고, 도출된 규칙을 바탕으로 근로자의 고용유지 강화에 도움을 주는 방안들을 제안하였다. 또한 직종별 영향 요인을 분석하기 위해 직종을 사무, 문화예술, 건설, 정보기술 분야로 구분하여 실험을 진행하였다. 그 결과 사무 분야는 10개, 문화예술 분야는 9개, 건설 분야는 4개, 그리고 정보기술 분야는 6개의 이직준비 규칙이 도출되었고 이를 토대로 직종별 맞춤화된 고용유지 강화 방안을 제시하였다.