• Title/Summary/Keyword: Emotion machine

Search Result 175, Processing Time 0.024 seconds

Enhancement of Text Classification Method (텍스트 분류 기법의 발전)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.155-156
    • /
    • 2019
  • Traditional machine learning based emotion analysis methods such as Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) are less accurate. In this paper, we propose an improved kNN classification method. Improved methods and data normalization achieve the goal of improving accuracy. Then, three classification algorithms and an improved algorithm were compared based on experimental data.

  • PDF

Speech Emotion Recognition Based on Deep Networks: A Review (딥네트워크 기반 음성 감정인식 기술 동향)

  • Mustaqeem, Mustaqeem;Kwon, Soonil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.331-334
    • /
    • 2021
  • In the latest eras, there has been a significant amount of development and research is done on the usage of Deep Learning (DL) for speech emotion recognition (SER) based on Convolutional Neural Network (CNN). These techniques are usually focused on utilizing CNN for an application associated with emotion recognition. Moreover, numerous mechanisms are deliberated that is based on deep learning, meanwhile, it's important in the SER-based human-computer interaction (HCI) applications. Associating with other methods, the methods created by DL are presenting quite motivating results in many fields including automatic speech recognition. Hence, it appeals to a lot of studies and investigations. In this article, a review with evaluations is illustrated on the improvements that happened in the SER domain though likewise arguing the existing studies that are existence SER based on DL and CNN methods.

EEG Dimensional Reduction with Stack AutoEncoder for Emotional Recognition using LSTM/RNN (LSTM/RNN을 사용한 감정인식을 위한 스택 오토 인코더로 EEG 차원 감소)

  • Aliyu, Ibrahim;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.717-724
    • /
    • 2020
  • Due to the important role played by emotion in human interaction, affective computing is dedicated in trying to understand and regulate emotion through human-aware artificial intelligence. By understanding, emotion mental diseases such as depression, autism, attention deficit hyperactivity disorder, and game addiction will be better managed as they are all associated with emotion. Various studies for emotion recognition have been conducted to solve these problems. In applying machine learning for the emotion recognition, the efforts to reduce the complexity of the algorithm and improve the accuracy are required. In this paper, we investigate emotion Electroencephalogram (EEG) feature reduction and classification using Stack AutoEncoder (SAE) and Long-Short-Term-Memory/Recurrent Neural Networks (LSTM/RNN) classification respectively. The proposed method reduced the complexity of the model and significantly enhance the performance of the classifiers.

An Emotion Recognition Technique using Speech Signals (음성신호를 이용한 감정인식)

  • Jung, Byung-Wook;Cheun, Seung-Pyo;Kim, Youn-Tae;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.494-500
    • /
    • 2008
  • In the field of development of human interface technology, the interactions between human and machine are important. The research on emotion recognition helps these interactions. This paper presents an algorithm for emotion recognition based on personalized speech signals. The proposed approach is trying to extract the characteristic of speech signal for emotion recognition using PLP (perceptual linear prediction) analysis. The PLP analysis technique was originally designed to suppress speaker dependent components in features used for automatic speech recognition, but later experiments demonstrated the efficiency of their use for speaker recognition tasks. So this paper proposed an algorithm that can easily evaluate the personal emotion from speech signals in real time using personalized emotion patterns that are made by PLP analysis. The experimental results show that the maximum recognition rate for the speaker dependant system is above 90%, whereas the average recognition rate is 75%. The proposed system has a simple structure and but efficient to be used in real time.

Design and Implementation of an Emotion Recognition System using Physiological Signal (생체신호를 이용한 감정인지시스템의 설계 및 구현)

  • O, Ji-Soo;Kang, Jeong-Jin;Lim, Myung-Jae;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • Recently in the mobile market, the communication technology which bases on the sense of sight, sound, and touch has been developed. However, human beings uses all five - vision, auditory, palatory, olfactory, and tactile - senses to communicate. Therefore, the current paper presents a technology which enables individuals to be aware of other people's emotions through a machinery device. This is achieved by the machine perceiving the tone of the voice, body temperature, pulse, and other biometric signals to recognize the emotion the dispatching individual is experiencing. Once the emotion is recognized, a scent is emitted to the receiving individual. A system which coordinates the emission of scent according to emotional changes is proposed.

Comparison of EEG Topography Labeling and Annotation Labeling Techniques for EEG-based Emotion Recognition (EEG 기반 감정인식을 위한 주석 레이블링과 EEG Topography 레이블링 기법의 비교 고찰)

  • Ryu, Je-Woo;Hwang, Woo-Hyun;Kim, Deok-Hwan
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.3
    • /
    • pp.16-24
    • /
    • 2019
  • Recently, research on emotion recognition based on EEG has attracted great interest from human-robot interaction field. In this paper, we propose a method of labeling using image-based EEG topography instead of evaluating emotions through self-assessment and annotation labeling methods used in MAHNOB HCI. The proposed method evaluates the emotion by machine learning model that learned EEG signal transformed into topographical image. In the experiments using MAHNOB-HCI database, we compared the performance of training EEG topography labeling models of SVM and kNN. The accuracy of the proposed method was 54.2% in SVM and 57.7% in kNN.

Analysis and Recognition of Depressive Emotion through NLP and Machine Learning (자연어처리와 기계학습을 통한 우울 감정 분석과 인식)

  • Kim, Kyuri;Moon, Jihyun;Oh, Uran
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.449-454
    • /
    • 2020
  • This paper proposes a machine learning-based emotion analysis system that detects a user's depression through their SNS posts. We first made a list of keywords related to depression in Korean, then used these to create a training data by crawling Twitter data - 1,297 positive and 1,032 negative tweets in total. Lastly, to identify the best machine learning model for text-based depression detection purposes, we compared RNN, LSTM, and GRU in terms of performance. Our experiment results verified that the GRU model had the accuracy of 92.2%, which is 2~4% higher than other models. We expect that the finding of this paper can be used to prevent depression by analyzing the users' SNS posts.

Digital Mirror System with Machine Learning and Microservices (머신 러닝과 Microservice 기반 디지털 미러 시스템)

  • Song, Myeong Ho;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.9
    • /
    • pp.267-280
    • /
    • 2020
  • Mirror is a physical reflective surface, typically of glass coated with a metal amalgam, and it is to reflect an image clearly. They are available everywhere anytime and become an essential tool for us to observe our faces and appearances. With the advent of modern software technology, we are motivated to enhance the reflection capability of mirrors with the convenience and intelligence of realtime processing, microservices, and machine learning. In this paper, we present a development of Digital Mirror System that provides the realtime reflection functionality as mirror while providing additional convenience and intelligence including personal information retrieval, public information retrieval, appearance age detection, and emotion detection. Moreover, it provides a multi-model user interface of touch-based, voice-based, and gesture-based. We present our design and discuss how it can be implemented with current technology to deliver the realtime mirror reflection while providing useful information and machine learning intelligence.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.

Emotion Prediction of Paragraph using Big Data Analysis (빅데이터 분석을 이용한 문단 내의 감정 예측)

  • Kim, Jin-su
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.267-273
    • /
    • 2016
  • Creation and Sharing of information which is structured data as well as various unstructured data. makes progress actively through the spread of mobile. Recently, Big Data extracts the semantic information from SNS and data mining is one of the big data technique. Especially, the general emotion analysis that expresses the collective intelligence of the masses is utilized using large and a variety of materials. In this paper, we propose the emotion prediction system architecture which extracts the significant keywords from social network paragraphs using n-gram and Korean morphological analyzer, and predicts the emotion using SVM and these extracted emotion features. The proposed system showed 82.25% more improved recall rate in average than previous systems and it will help extract the semantic keyword using morphological analysis.