• 제목/요약/키워드: Emotion machine

검색결과 175건 처리시간 0.023초

AE-Artificial Emotion

  • Xuyan, Tu;Liqun, Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.146-149
    • /
    • 2003
  • This paper proposes the concept of “Artificial Emotion”(AE). The goal of AE is simulation, extension and expansion of natural emotion, especially human emotion. The object of AE is machine emotion and emotion machine. The contents of AE are emotion recognition, emotion measurement, emotion understanding emotion representation emotion generation, emotion processing, emotion control and emotion communication. The methodology, technology, scientific significance and application value of artificial emotion are discussed

  • PDF

다중 생체신호를 이용한 신경망 기반 전산화 감정해석 (Neural-network based Computerized Emotion Analysis using Multiple Biological Signals)

  • 이지은;김병남;유선국
    • 감성과학
    • /
    • 제20권2호
    • /
    • pp.161-170
    • /
    • 2017
  • 감정은 학습능력, 행동, 판단력 등 삶의 많은 부분에 영향을 끼치므로 인간의 본질을 이해하는 데 중요한 역할을 한다. 그러나 감정은 개인이 느끼는 강도가 다르며, 시각 영상 자극을 통해 감정을 유도하는 경우 감정이 지속적으로 유지되지 않는다. 이러한 문제점을 극복하기 위하여 총 4가지 감정자극(행복, 슬픔, 공포, 보통) 시 생체신호(뇌전도, 맥파, 피부전도도, 피부 온도)를 획득하고, 이로부터 특징을 추출하여 분류기의 입력으로 사용하였다. 감정 패턴을 확률적으로 해석하여 다른 공간으로 매핑시켜주는 역할을 하는 Restricted Boltzmann Machine (RBM)과 Multilayer Neural Network (MNN)의 은닉층 노드를 이용하여 비선형적인 성질의 감정을 구별하는 Deep Belief Network (DBN) 감정 패턴 분류기를 설계하였다. 그 결과, DBN의 정확도(약 94%)는 오류 역전파 알고리즘의 정확도(약 40%)보다 높은 정확도를 가지며 감정 패턴 분류기로서 우수성을 가짐을 확인하였다. 이는 향후 인지과학 및 HCI 분야 등에서 활용 가능할 것으로 사료된다.

추론 능력에 기반한 음성으로부터의 감성 인식 (Inference Ability Based Emotion Recognition From Speech)

  • 박창현;심귀보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.123-125
    • /
    • 2004
  • Recently, we are getting to interest in a user friendly machine. The emotion is one of most important conditions to be familiar with people. The machine uses sound or image to express or recognize the emotion. This paper deals with the method of recognizing emotion from the sound. The most important emotional component of sound is a tone. Also, the inference ability of a brain takes part in the emotion recognition. This paper finds empirically the emotional components from the speech and experiment on the emotion recognition. This paper also proposes the recognition method using these emotional components and the transition probability.

  • PDF

Emotion Recognition of Low Resource (Sindhi) Language Using Machine Learning

  • Ahmed, Tanveer;Memon, Sajjad Ali;Hussain, Saqib;Tanwani, Amer;Sadat, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.369-376
    • /
    • 2021
  • One of the most active areas of research in the field of affective computing and signal processing is emotion recognition. This paper proposes emotion recognition of low-resource (Sindhi) language. This work's uniqueness is that it examines the emotions of languages for which there is currently no publicly accessible dataset. The proposed effort has provided a dataset named MAVDESS (Mehran Audio-Visual Dataset Mehran Audio-Visual Database of Emotional Speech in Sindhi) for the academic community of a significant Sindhi language that is mainly spoken in Pakistan; however, no generic data for such languages is accessible in machine learning except few. Furthermore, the analysis of various emotions of Sindhi language in MAVDESS has been carried out to annotate the emotions using line features such as pitch, volume, and base, as well as toolkits such as OpenSmile, Scikit-Learn, and some important classification schemes such as LR, SVC, DT, and KNN, which will be further classified and computed to the machine via Python language for training a machine. Meanwhile, the dataset can be accessed in future via https://doi.org/10.5281/zenodo.5213073.

HRI를 위한 사람의 내적 요소 기반의 인공 정서 표현 시스템 (Human emotional elements and external stimulus information-based Artificial Emotion Expression System for HRI)

  • 오승원;한민수
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.7-12
    • /
    • 2008
  • 사람과 로봇의 인터랙션에 있어 정서의 역할은 중요하다. 그러므로 사람과 유사한 정서 메커니즘이 로봇에게 필요하다. 본 논문에서는 사람의 정서에 대한 심리적 연구를 바탕으로 사람의 내적 요소에 기반한 새로운 인공 정서 표현 시스템을 제안한다. 제안된 시스템은 external stimulus, emotion, mood, personality, tendency, machine rhythm 의 6가지 정보 요소를 활용하며, 각 요소들은 그들의 특성에 따라 결과적으로 emotion 표현 패턴의 변화에 영향을 준다. 그 결과 통일한 외부 자극들은 내적 상태에 따라 emotion의 변화를 만들어 낸다. 제안된 시스템은 사람과 로봇의 자연스러운 인터랙션을 유지하고, 친밀한 관계를 형성할 수 있도록 도움을 줄 것이다.

  • PDF

감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가 (A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification)

  • 황재원;고영중
    • 인지과학
    • /
    • 제19권4호
    • /
    • pp.499-517
    • /
    • 2008
  • 본 논문에서는 한국어 감정 분류에 기반이 되는 감정 자질 추출의 효과적인 추출 방법을 제안하고 평가하여, 그 유용성을 보인다. 한국어 감정 자질 추출은 감정을 지닌 대표적인 어휘로부터 시작하여 확장할 수 있으며, 이와 같이 추출된 감정 자질들은 문서의 감정을 분류하는데 중요한 역할을 한다. 문서 감정 분류에 핵심이 되는 감정 자질의 추출을 위해서는 영어 단어 시소러스 유의어 정보를 이용하여 자질들을 확장하고, 영한사전을 이용하여 확장된 자질들을 번역하여 감정 자질들을 추출하였다. 추출된 한국어 감정 자질들을 평가하기 위하여, 이진 분류 기법인 지지 벡터 기계(Support Vector Machine)를 사용해서 한국어 감정 자질로 표현된 입력문서의 감정을 분류하였다. 실험 결과, 추출된 감정 자질을 사용한 경우가 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 14.1%의 성능 향상을 보였다.

  • PDF

3 레벨 구조 기반의 음악 무드분류 (Music Emotion Classification Based On Three-Level Structure)

  • 김형국;정진국
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권2E호
    • /
    • pp.56-62
    • /
    • 2007
  • This paper presents the automatic music emotion classification on acoustic data. A three-level structure is developed. The low-level extracts the timbre and rhythm features. The middle-level estimates the indication functions that represent the emotion probability of a single analysis unit. The high-level predicts the emotion result based on the indication function values. Experiments are carried out on 695 homogeneous music pieces labeled with four emotions, including pleasant, calm, sad, and excited. Three machine learning methods, GMM, MLP, and SVM, are compared on the high-level. The best result of 90.16% is obtained by MLP method.

Multiclass Music Classification Approach Based on Genre and Emotion

  • Jonghwa Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.27-32
    • /
    • 2024
  • Reliable and fine-grained musical metadata are required for efficient search of rapidly increasing music files. In particular, since the primary motive for listening to music is its emotional effect, diversion, and the memories it awakens, emotion classification along with genre classification of music is crucial. In this paper, as an initial approach towards a "ground-truth" dataset for music emotion and genre classification, we elaborately generated a music corpus through labeling of a large number of ordinary people. In order to verify the suitability of the dataset through the classification results, we extracted features according to MPEG-7 audio standard and applied different machine learning models based on statistics and deep neural network to automatically classify the dataset. By using standard hyperparameter setting, we reached an accuracy of 93% for genre classification and 80% for emotion classification, and believe that our dataset can be used as a meaningful comparative dataset in this research field.

Emotion Recognition in Arabic Speech from Saudi Dialect Corpus Using Machine Learning and Deep Learning Algorithms

  • Hanaa Alamri;Hanan S. Alshanbari
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.9-16
    • /
    • 2023
  • Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.