• Title/Summary/Keyword: Emotion Lighting

Search Result 68, Processing Time 0.019 seconds

Effect of Thermal Environment and Illuminance on the Occupants Works based on the Electroencephalogram and Electrocardiogram Analysis (뇌파와 심전도 분석을 기반으로 한 온열환경 및 조도가 재실자의 업무에 미치는 영향)

  • Kim, Hyung-Sun;Lim, Jae-Hyun;Kim, Hyoung-Tae;Kim, Hyoung-Sik;Kuwak, Won-Tack;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.95-106
    • /
    • 2014
  • This research analyzed biosignals associated with the change of emotion from lighting felt by the occupants and task type under various indoor thermal environments and illuminance, and examined the biosignals' impacts on work. To this end, the indoor thermal environment was constructed on the basis of PMV (predicted mean vote) index value, and various indoor environments were created by changing the brightness of LED stands. In this manner, a variety of indoor environments were constructed, and experiments were carried out. This research evaluates the sensibility response to lighting through a questionnaire survey in the given environment and incorporates different types of error searches. In this way, changes were analyzed by measuring electroencephalogram (EEG) and electrocardiograms (ECG). As a result, all biosignals on the task type showed significant differences from the thermal environment change. When PMV index value was 0.8 (temperature: $25^{\circ}C$, humidity: 50 %), concentration and attention were the most activated. However, the biosignals did not show significant differences from the illuminance change. Concentration on an occupant's work capability was confirmed to be closely related to the thermal environment. As for the subjective emotional response to lighting, the occupants felt comfort as illuminance was lower, while they felt discomfort as illuminance was higher. However, there were no significant differences from the thermal environment change.

Lighting Control using Frequency Analysis of Music (음악의 주파수 분석을 이용한 조명 제어)

  • HwangBo, Seok;Chun, Sung-Yong;Gang, So-Yeung;Lee, Chan-Su
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1325-1337
    • /
    • 2013
  • Music affects sensitivity and emotion of human, emotional power of the music has been applied to various fields. Especially, to visualize as well as listen to music is able to create various atmosphere. In this paper, we proposed sensitivity control system for interaction with people to merge music and lighting. Because existing FT(Fourier Transform) has not information about the time, to analyze information of changed signal according to the time is difficult. In order to solve such a problem, we use STFT(Short Time Fourier Transform) method to analyze music signal. and also, we classified music for three genre and compared the frequency characteristics according to genre, and control the color, brightness of LED light based on the frequency components within analysis range. Unlike existing LED lighting control study using music, we had color control of emotional lighting and brightness control using variation amount of music signal in this paper. Proposed lighting control system will be able to utilize various industry fields as well as emotional lighting.

An Experimental Study to Determine Proper Lighting Conditions in Powder Rooms

  • Kim, Hyun-Ji;Lim, Jang-Hyeon;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.54-62
    • /
    • 2013
  • In this study, a mock powder room was installed with variable LED lighting environments in order to conduct the experiments. The experimental conditions include luminaire type, illuminance ratio, vertical illuminance and color temperatures. The evaluation methods used were the Semantic Differential Method and a subjective evaluation on activities through observation. The SD evaluation result factor analysis categorizes ideas into three factors: brightness, emotion, and glare. The vertical bracket or the combined luminaire (luminous panel+ Vertical bracket) has better brightness than luminous panel. A vertical illuminance of 500lx is not significantly difference as compared to 600lx, allowing 500lx to be considered standard. The emotional atmosphere is evaluated as being better at lower color temperature. The luminous panel is the best for reducing glare while the vertical bracket is the worst. The best conditions differ according to the illuminance ratio of the luminous panel and vertical bracket. In the subjective evaluation (satisfaction with lighting environment, suitability to activity) the combined luminaire and 4000K received the best evaluation.

An Efficient Smart Indoor Emotional Lighting Control System based on Android Platform using Biological Signal (생체신호를 이용한 안드로이드 플랫폼 기반의 효율적인 스마트 실내 감성조명 제어 시스템)

  • Yun, Su-Jeong;Hong, Sung-IL;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.199-207
    • /
    • 2016
  • In this paper, we propose efficient smart indoor emotional lighting control system based on android platform using the biological signal. The proposed smart indoor smart emotional lighting control system were configured as the biological signal measurement device and removable smart wall pad, lighting driver, luminaire. The control system was extracts the emotional language by measured the biological signal, and it was transmitted a control signal to each lighting driver using a bluetooth in the wall pad. The lighting driver were designed to control the lighting device through an expansion board by collected control signal and the illuminance information the surrounding. In this case, the wall pad can be selecting of manual control and the bio signal mode by that indoor emotional lighting control algorithms, and it was implemented the control program that possible to partial control by selecting the wanted light. Experiment results of the proposed smart indoor emotional lighting control system, it were possible to the optional control about the luminaire of required area, and the manual control by to adjustable of color temperature with that the efficiently adjustable of lighting by to biological signal and emotional language. Therefore, were possible to effective control for improvement of concentration and business capability of indoor space business conduct by controlling the color and brightness that is appropriate for your situation. And, was reduced power consumption and dimmer voltage, lighting-current than the existing-emotional lighting control system.

A Study on User-Centered Emotional Illumination Design Using Color Temperature of Light (빛의 색온도를 활용한 사용자 중심의 감성조명 디자인 개발에 관한 연구)

  • Cho, Sung-Jo;Park, Jun-Hong
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.445-454
    • /
    • 2018
  • The purpose of this paper is to present the direction of emotional lighting design of a new concept suitable for the user's living environment based on the experiment and the result of the recognition of the cognitive effect of the color of the lighting on the user's sensibility. As a research method, we collected meaningful results of color temperature and emotion of light through literature research and experimented with users in their twenties. Based on this, we presented the design direction of emotional lighting. As a result, we designed emotional lighting that can transform the shape of the four joints freely to realize the user's demand. We also derive the color temperature of light that can be optimized for the user's work and environment, Concentration, mood, and relaxation. The result of this paper is meaningful and worthy of suggesting emotional lighting design with user - oriented new perspective, deviating from previous method of planning lighting.

Design of RBFNN-based Emotional Lighting System Using RGBW LED (RGBW LED 이용한 RBFNN 기반 감성조명 시스템 설계)

  • Lim, Sung-Joon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.696-704
    • /
    • 2013
  • In this paper, we introduce the LED emotional lighting system realized with the aid of both intelligent algorithm and RGB LED combined with White LED. Generally, the illumination is known as a design factor to form the living place that affects human's emotion and action in the light- space as well as the purpose to light up the specific space. The LED emotional lighting system that can express emotional atmosphere as well as control the quantity of light is designed by using both RGB LED to form the emotional mood and W LED to get sufficient amount of light. RBFNNs is used as the intelligent algorithm and the network model designed with the aid of LED control parameters (viz. color coordinates (x and y) related to color temperature, and lux as inputs, RGBW current as output) plays an important role to build up the LED emotional lighting system for obtaining appropriate color space. Unlike conventional RBFNNs, Fuzzy C-Means(FCM) clustering method is used to obtain the fitness values of the receptive function, and the connection weights of the consequence part of networks are expressed by polynomial functions. Also, the parameters of RBFNN model are optimized by using PSO(Particle Swarm Optimization). The proposed LED emotional lighting can save the energy by using the LED light source and improve the ability to work as well as to learn by making an adequate mood under diverse surrounding conditions.

Design and Implementation of Sensibilities Lighting LED Controller for a Ship (선박용 감성조명 LED 제어기의 설계 및 구현)

  • Lee, Jae-Hong;Park, Ju-Won;Lim, Jin-Kang;Lee, Sang-Bae
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.763-768
    • /
    • 2010
  • Today the light of mankind since the dawn of mankind and that they were living "lives" on the huge influence across space is a dynamic energy. Because of this, when all human beings with the light and you can feel more comfortable with a stable mind to the beauty and the pursuit of happiness is to have instincts. In this paper, a fuzzy control system using a combination of external environmental factors, respectively, the conversion of quantitative uncertainty information into the LED lighting is designed to express algorithms, available in indoor circadian control circuit was designed and fabricated LED. Factor in the external environment temperature, humidity, and light intensity values to the controller through the sensor to accept these values and the optimal values for lighting the fuzzy control algorithm is converted into human emotion to feel comfortable to express through the dimming control LED lighting.

Sensibility Evaluation of Color Temperature and Rendering Index to the LED-Based White Illumination (LED 기반 백색 조명의 색온도 및 연색지수에 따른 감성 평가)

  • Jee, Soon-Duk;Choi, Kyoung-Jae;Kim, Ho-Kun;Lee, Sang-Hyuk
    • Science of Emotion and Sensibility
    • /
    • v.9 no.4
    • /
    • pp.353-366
    • /
    • 2006
  • The aim of this study is to characterize the optical properties of white light-emitting diodes lighting modules and then to evaluate the sensitivity of students and teachers in reacting to the optical properties of these modules. For the sake of this study, each of 5 lighting modules was introduced to the 5 test cabinets. The 5 test cabinets were evaluated and analyzed the student and teacher's sensitivity reaction. We have selected If questions on sensitivity of the lighting and evaluated these questions with semantic differential method. To verify the reliability and objectivity of the questions, the feasibility survey was carried out by a preliminary test. As a result of the test, the sensitivities on the test cabinets were classified the 4 factors, namely, activity as the first factor, stability as the second one , potency as the third one and sensitive image as the fourth one respectively. By the evaluation of student and teacher's sensitivity on the correlated color temperature, they preferred the cabinet with the higher color temperature in view of the activity and potency. And they preferred the cabinet with the lower color temperature in view of the stability factor. In the sensitive image, they preferred the 5800K, bluish white lighting regardless of the color temperature. By the evaluation on the color rendering index, they preferred the cabinet with the higher color rendering index in view of the activity, stability and sensitive image. In the potency factor, they preferred the white lighting with the middle color rendering index.

  • PDF

A Study on Evaluation of LED Lighting Environments for Energy Saving and Work Effectiveness (에너지 저감과 업무 효율성을 위한 LED 조명환경 평가에 대한 연구)

  • Kim, Hyung-Sun;Lim, Jae-Hyun;Lee, Kee-Sun;Kim, Kil-Hee;Jung, Hee-Chang;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.18 no.2
    • /
    • pp.45-54
    • /
    • 2015
  • This study carried out an experiment to identify subject's work effectiveness and energy saving effect using LED light. Towards this end, this study configured nine various lighting environments in order to control PWM (Pulse Width Modulation) and illuminance (lux), which are the characteristics of LED light. The PWM ratio of LED light was set as R:G:B=1:1:1, R:G:B=4:1:5, and R:G:B=8:7:7, respectively, and illuminance (lux) was set as 400 lx, 700 lx, and 1000 lx, respectively. In addition, the indoor environment was set temperature $20-24^{\circ}C$, humidity 50%-60%, and the amount of clothing 1. This study analyzed work effectiveness and energy consumption in nine lighting environments, each. Error correction was performed for work effectiveness analysis, and cumulative power consumption was measured in each lighting environment for energy consumption analysis. According to experiment results through the lighting environments suggested in this study, accuracy and spent time effectiveness were good in 700lux and higher than 400lux. For spent time, the best effectiveness was revealed in the suggested PWM ratio, R:G:B=8:7:7. The lowest power consumption on each illuminance (lux) was revealed in the order of R:G:B=8:7:7, RGB=1:1:1, and R:G:B=4:1:5. Therefore, pulse-width modulation effect is proposed in this paper was found to affect the efficiency and energy saving.

Exploring Users' Desired Emotion in Product Light Focusing on the Refrigerator (제품 조명에 기대하는 소구 감성 탐색: 냉장고 사례를 중심으로)

  • Jeong, Kyeong Ah;Suk, Hyeon-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.3-16
    • /
    • 2018
  • Despite the substantial changes made in the product design field to adopt light as an essential design element, there has been little effort to define how customers respond emotionally to the light design of products. Therefore, it is necessary to analyze the emotional effect of light as a new design element. However, previous research focuses solely on deriving optimal lighting conditions to achieve particular emotional effects. Therefore, this paper investigates the customers' desired emotional effects of product's light design. We studied refrigerators that utilize light as the main design element of the product. We applied mixed methods by combining close-ended questions and open-ended question to efficiently derive the desired emotion. Participants were asked to choose the most favorable refrigerator image in each of the twelve image groups and indicate why they choose that image with the short-answer survey form. Approximately one thousand terms were collected, and those terms were classified into 29 groups using thesaurus relationships. The term groups were again classified into the four big emotion categories and labelled as "abstract quality," "light property," "space perception," and "visual comfort." Also, a model of the relationship between desired light style and light properties was proposed, since we observed the light properties related to three other categories. This study used mixed methods to identify the emotional value of a new design element. We suggest that the emotional categories derived and the proposed relationship model could be used to evaluate the product's light design.