• Title/Summary/Keyword: Emotion Eecognition

Search Result 1, Processing Time 0.014 seconds

Image Color, Brightness, Saturation Similarity Validation Study of Emotion Computing (이미지 색상, 명도, 채도 감성컴퓨팅의 유사성 검증 연구)

  • Lee, Yean-Ran
    • Cartoon and Animation Studies
    • /
    • s.40
    • /
    • pp.477-496
    • /
    • 2015
  • Emotional awareness is the image of a person is represented by different tendencies. Currently, the emotion computing to objectively evaluate the emotion recognition research is being actively studied. However, existing emotional computing research has many problems to run. First, the non-objective in emotion recognition if it is inaccurate. Second, the correlation between the emotion recognition is unclear points. So to test the regularity of image sensitivity to the need of the present study is to control emotions in the computing system. In addition, the screen number of the emotion recognized for the purpose of this study, applying the method of objective image emotional computing system and compared with a similar degree of emotion of the person. The key features of the image emotional computing system calculates the emotion recognized as numbered digital form. And to study the background of emotion computing is a key advantage of the effect of the James A. Russell for digitization of emotion (Core Affect). Pleasure emotions about the core axis (X axis) of pleasure and displeasure, tension (Y-axis) axis of tension and relaxation of emotion, emotion is applied to the computing research. Emotional axis with associated representative sensibility very happy, excited, elated, happy, contentment, calm, relaxing, quiet, tired, helpless, depressed, sad, angry, stress, anxiety, pieces 16 of tense emotional separated by a sensibility ComputingIt applies. Course of the present study is to use the color of the color key elements of the image computing formula sensitivity, brightness, and saturation applied to the sensitivity property elements. Property and calculating the rate sensitivity factors are applied to the importance weight, measured by free-level sensitivity score (X-axis) and the tension (Y-axis). Emotion won again expanded on the basis of emotion crossed point, and included a representative selection in Sensibility size of the top five ranking representative of the main emotion. In addition, measuring the emotional image of a person with 16 representative emotional score, and separated by a representative of the top five senses. Compare the main representative of the main representatives of Emotion and Sensibility people aware of the sensitivity of the results to verify the similarity degree computing emotion emotional emotions depending on the number of representative matches. The emotional similarity computing results represent the average concordance rate of major sensitivity was 51%, representing 2.5 sensibilities were consistent with the person's emotion recognition. Similar measures were the degree of emotion computing calculation and emotion recognition in this study who were given the objective criteria of the sensitivity calculation. Future research will need to be maintained weight room and the study of the emotional equation of a higher concordance rate improved.