• Title/Summary/Keyword: Emitting

Search Result 3,874, Processing Time 0.037 seconds

Management Strategy of Indoor Hazardous Chemicals (실내.외 통합 모델링 및 인체 위해성 평가를 통한 실내 유해화학물질의 관리 전략)

  • Shin, Yong-Seung;Lim, Hye-Sook
    • Journal of Environmental Policy
    • /
    • v.7 no.2
    • /
    • pp.67-90
    • /
    • 2008
  • The purpose of this study is to develop indoor air quality management strategies regarding indoor air pollutants while considering various factors affecting indoor pollutants concentration. The Integrated Indoor Air Quality model(IIAQ) developed by Seoul National University is used for this study. The IIAQ model is a tool that can provide an integrated view to indoor environmental pollution by simulating suggested scenarios. The results of the modeling are used to assess health risk. The concentrations that are used for the risk characterization are weighted concentrations based on the period of time in each place and existing Indoor Air Quality(IAQ) standards. The estimated concentration of toluene and formaldehyde for 10 years through the IIAQ model was 207.3 $ug/m^3$ and 36.4 $ug/m^3$ in indoors, and 55.9 $ug/m^3$ and 8.62 $ug/m^3$ in outdoors. These concentrations are lower than the existing IAQ standards. The estimated carcinogenic risk of formaldehyde is up to 1.05E-03 for the adult male group and exceeds 1E-06 for all receptor groups. This value means that cancer could affect one person out of 1000. The estimated non-carcinogenic risk of toluene was lower than 1, which means that there was no serious non- carcinogenic risk. The result of modeling shows that using low emitting indoor sources is the most effective strategy for both formaldehyde and toluene. This risk assessment suggests that the total exposure levels of existing IAQ standards may cause serious carcinogenic risk. In order to avoid uncontrolled risk, it is suggested that the current IAQ standards should be adjusted by taking into account the total amount of exposure from all exposure pathways from indoor and outdoor sources.

  • PDF

The Evaluation of Scattering Effects for Various Source Locations within a Phantom in Gamma Camera (감마카메라에서의 팬텀 내 선원 위치 변화에 따른 산란 영향 평가)

  • Yu, A-Ram;Lee, Young-Sub;Kim, Jin-Su;Kim, Kyeong-Min;Cheon, Gi-Jeong;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.216-224
    • /
    • 2009
  • $^{131}I$ is a radiological isotope being used widely for treatment of cancer as emitting gamma-ray and it is also applied to estimate the function of thyroid for its accumulation in thyroid. However, $^{131}I$ is more difficult to quantitate comapred to $^{99m}Tc$, because $^{131}I$ has multiple energy gamma-ray emissions compared to $^{99m}Tc$ which is a mono energetic gamma-ray source. Especially, scattered ray and septal penetration resulted by high energy gamma ray have a bad influence upon nuclear medicine image. The purpose of this study was to estimate scatter components depending on the different source locations within a phantom using Monte Carlo simulation (GATE). The simulation results were validated by comparing with the results of real experiments. Dual-head gamma camera (ECAM, Chicago, Illinois Siemens) with high energy, general-purpose, and parallel hole collimators (hole radius: 0.17 cm, septal thickness: 0.2 cm, length: 5.08 cm) was used in this experiment. The NaI crystal is $44.5{\times}59.1\;cm$ in height and width and 0.95 cm in thickness. The diameter and height of PMMA phantom were 16 cm and 15 cm, respectively. The images were acquired at 5 different locations of $^{131}I$ point source within the phantom and the images of $^{99m}Tc$ were also acquired for comparison purpose with low energy source. The simulation results indicated that the scattering was influenced by the location of source within a phantom. The scattering effects showed the same tendency in both simulation and actual experiment, and the results showed that the simulation was very adequate for further studies. The results supported that the simulation techniques may be used to generalize the scattering effects as a function of a point source location within a phantom.

  • PDF

Effect of RED and FAR-RED LEDs on the Fruit Quality of 'Hongro'/M.26 Apple (적색과 초적색 LEDs 보광이 '홍로'/M.26 사과의 과실품질에 미치는 영향)

  • Kang, Seok-Beom;Song, Yang-Yik;Park, Moo-Yong;Kweon, Hun-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • BACKGROUND: As improved LEDs (Light Emitting Diode) industry and decreased the price of LEDs in Korea, some farmers try to using the RED LEDs in green house and open field to increase the production of crop under bad weather condition. The aim of this study is to find out the effect of RED and FAR-RED LEDs lighting on the fruit quality of twelve-year old 'Hongro'/M.26 apple during night after sunset. METHODS AND RESULTS: FAR-RED (730nm, 2 and 4 hour) and RED (620nm, 2 and 4 hour) with 20 LED/PCB were treated in orchard for 16 weeks from June 10 to October 10 in 2009 and 2010 with control as an comparison. In our experiments, leaf weight was significantly higher in RED LEDs than control, tended to be decreased as times of FAR-RED lighting increased. Fruit weight was increased more in RED LEDs than control in 2009 and 2010, but decreased in FAR-RED lighting compared to control in 2010. Firmness and Hunter's a value of fruit were increased in FAR-RED lighting with 2 and 4 h than control. Soluble solid contents were higher in 2 h RED and 2, 4 h FAR-RED LEDs compared to control in 2009, there was no significant difference in 2010. Acid contents were no difference among the treatments. CONCLUSION(S): In our results, we found that RED LEDs was more helpful to increase the fruit weight and FAR-RED LEDs promote to be higher hunter a value of fruit skin. So, we thought that it is necessary to more study if mixed of RED and FAR-RED lighting is more helpful to promote fruit quality of 'Hongro' apple than single lighting of RED or FAR-RED LEDs respectively.

Retention Characteristics of Tc-99m-Pullulan-Derivatives in CT26 Tumor of Mice (마우스 CT26 종양에서 Tc-99m 표지 플루란유도체의 저류 특성)

  • Heo, Young-Jun;Song, Ho-Chun;Bom, Hee-Seung;Na, Kun;Kim, Seong-Min
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.393-401
    • /
    • 2003
  • Objective: Pullulan derivatives (PD) can be used to make self-assembled hydrogel nanoparticles which are responsive to ionic strength. The aim of this study is to evaluate the potential of PD as a retaining carrier of radioisotope inside tumors. Materials and Methods: Four types of PD were evaluated which included pullulan acetate (PA), succinylated PA (SPA), PA-DTPA and SPA-DTPA conjugates. They were radiolabeled with Tc-99m. Labelling efficiencies were determined at 30 min, 1, 2, 4 and 12 hours after radiolabeling. CT-25 colon cancer cells were subcutaneously injected into Balb/c mice. After 2 weeks of subcutaneous injection, Tc-99m-labelled PD (Tc-99m-PD) were injected into the tumors. Whole body images of mice were obtained at 30 min, 1, 2, and 12 hr after intratumoral injection. All twenty mice were grouped into four groups by largest diameter; control A (largest diameter = 5 mm, n = 5), control B (largest diameter = 10 mm, n = 5), pullulan A (largest diameter = 5 mm, n = 5), pllulan B (largest diameter = 10 mm, n = 5). Dynamic images were obtained for 1 hour after intratumoral injection. Static images were obtained at 1 hr, 2 hr, 3 hr and 4 hr after intratumoral injection with Tc-99m pertechnetate and Tc-99m-PA. Target-to-background ratios and retention rates were calculated. Results: Labeling efficiencies of PA, SPA, PA-DTPA and SPA-DTPA were $94.5{\pm}5.9%,\;97.8{\pm}3.5%\;94.2{\pm}3.8%,\;and\;92.5{\pm}6.2%$, respectively (p>0.05). Percent retention rates (%RR) of PA and PA-DTPA were significantly higher than those of control, however, those of SP-DTPA and SPA became similar to control at 4 and 12 hr, respectively. %RR of pullulan A and pullulan B at 1, 4 and 8 hr is significantly higher than that of control (p < 0.05). However, %RR between pullulan A and pullulan B were similar. Conclusion: The lonic strength dependent PD-nanoparticles are retained in the tumor. No difference of %RR according to tumor size was noted. Therapeutic application of PD labelled with beta- or alpha- emitting radionuclides can be expected.

Imaging Neuroreceptors in the Living Human Brain

  • Wagner Jr Henry N.;Dannals Robert F.;Frost J. James;Wong Dean F.;Ravert Hayden T.;Wilson Alan A.;Links Jonathan M.;Burns H. Donald;Kuhar Michael J.;Snyder Solomon H.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.18 no.2
    • /
    • pp.17-23
    • /
    • 1984
  • For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human mind in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On May 25, 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine receptors than serotonin-2 receptors. Preliminary studies in patients with neuropsychiatric disorders suggests that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits quantitative assay of picomolar quantities of neuro-receptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. The growth of any scientific field is based on a paradigm or set of ideas that the community of scientists accepts. The unifying principle of nuclear medicine is the tracer principle applied to the study of human disease. Nineteen hundred and sixty-three was a landmark year in which technetium-99m and the Anger camera combined to move the field from its latent stage into a second stage characterized by exponential growth within the framework of the paradigm. The third stage, characterized by gradually declining growth, began in 1973. Faced with competing advances, such as computed tomography and ultrasonography, proponents and participants in the field of nuclear medicine began to search for greener pastures or to pursue narrow sub-specialties. Research became characterized by refinements of existing techniques. In 1983 nuclear medicine experienced what could be a profound change. A new paradigm was born when it was demonstrated that, despite their extremely low chemical concentrations, in the picomolar range, it was possible to image and quantify the distribution of receptors in the human body. Thus, nuclear medicine was able to move beyond physiology into biochemistry and pharmacology. Fundamental to the science of pharmacology is the concept that many drugs and endogenous substances, such as neurotransmitters, react with specific macromolecules that mediate their pharmacologic actions. Such receptors are usually identified in the study of excised tissues, cells or cell membranes, or in autoradiographic studies in animals. The first imaging and quantification of a neuroreceptor in a living human being was performed on May 25, 1983 and reported in the September 23, 1983 issue of SCIENCE. The study involved the development and use of carbon-11 N-methyl spiperone (NMSP), a drug with a high affinity for dopamine receptors. Since then, studies of dopamine and serotonin receptors have been carried out in over 100 normal persons or patients with various neuropsychiatric disorders. Exactly one year later, the first imaging of opitate receptors in a living human being was performed [1].

  • PDF

Bioremediation on the Benthic Layer in Polluted Inner Bay by Promotion of Microphytobenthos Growth Using Light Emitting Diode (LED) 1. Effects of irradiance and wavelength on the growth of benthic diatom, Nitzschia sp. (발광다이오드(LED)를 이용한 저서미세조류의 성장촉진에 의한 오염해역 저질환경개선 1. 저서규조류 Nitzschia sp. 성장에 영향을 미치는 광량과 파장)

  • Oh, Seok-Jin;Park, Dal-Soo;Yang, Han-Soeb;Yoon, Yang-Ho;Honjo, Tsuneo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.93-101
    • /
    • 2007
  • In order for bioremediate the benthic layer in polluted inner Bay, the effects of irradiance and wave-length irradiated from light emission diode (LED) on the growth of benthic diatom Nitzschia sp. (Hakozaki Bay strain of Japan) were investigated. The Nitzschia sp. was cultured under blue LED (450 nm), yellow LED (590 nm), red LED (650 nm) and fluorescent lamp (mixed wavelengths). At $25^{\circ}C$ and 30 psu, the growth of Nitzschia sp. showed its peak at $20\;{\mu}mol\;m^{-2}\;s^{-1}$ (blue LED) and $40\;{\mu}mol\;m^{-2}\;s^{-1}$ (fluorescent lamp), and was inhibited at the irradiance higher than that irradiance. Nitzschia sp. in yellow LED and red LED is fitted by a rectangular hyperbolic curve because no photoinhibition was observed under maximum irradiance used in this study. The irradiance-growth curves were described as ${\mu}=-0.46{\exp}(1-I/6.32)+0.46-0.00043I,\;(r^2=0.98)$ under blue LED, ${\mu}=0.42(I+7.87)/(I+58.9),\;(r^2=0.99)$ under yellow LED, ${\mu}=0.39(I+3.39)/(I+21.6),\;(r^2=0.94)$ under red LED, ${\mu}=-0.38{\exp}(1-I/7.23)+0.38-0.00016I,\;(r^2=0.96)$ under fluorescent lamp. Maximum specific growth rate of blue LED, yellow LED, red LED and fluorescent lamp was $0.44\;day^{-1},\;0.42\;day^{-1},\;0.39\;day^{-1}$ and $0.37\;day^{-1}$, respectively. The absorption coefficient ($a_{ph}$) of Nitzschia sp. was similar under all the wavelengths (400 nm-700 nm), although maximum $a_{ph}$ was $0.0224\;m^2\;mg\;chi.\;{\alpha}^{-1}$ in 472 nm and $0.0179\;m^2\;mg\;chi.\;{\alpha}^{-1}$) in 663 nm. The results may indicate the possibility of environmental improvement around the benthic layer in polluted coastal area because microphytobenthos growth is stimulated by means of irradiated blue LED at the benthic boundary layer during both autumn and winter, and yellow LED, which might have been suppressed growth of harmful algae, at the layer during both spring and summer.

  • PDF

A Study on Air Resistance and Greenhouse Gas Emissions of an Ocean Leisure Planning Boat (해양레저용 활주형선의 공기저항 및 온실 가스 배출에 대한 연구)

  • Kim, Y.S.;Hwang, S.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.202-210
    • /
    • 2013
  • As incomes increase, interest in ocean leisure picks up. As a result, a lot of research and developments on hull form design and production of planing boats, mostly used for ocean leisure, are needed. Analysis in researches on resistance of planing boats shows that resistance characteristic of planing boats is different from resistance characteristic of general boats because the former is fast, and its wetted surface is very small. Using Savitsky formula widely used in the calculation of effective horse power in shipbuildingyards, and propulsion system and engine manufacturers, this study calculated total resistance of a research planing boat. Then it analyzed the flow characteristics of the planing boat through theoretical analysis and wind tunnel experiment, and computed air resistance and lift force by changes of speed and trim angle. It also compared and analyzed result of theoretical analysis and experiment of the ratio of air resistance to total resistance under variations of velocity and trim angle. When the study is used to estimate more accurate effective horse power, it is expected to remedy abuses of unnecessarily installing high-powered engine. As nature disasters due to abnormal changes of weather increase, interest in greenhouse gas grows. International Maritime Organization (IMO) legislated Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI) to reduce ship greenhouse gas emissions. But this index will be applied to over 400 tons ships, small ships, emitting more greenhouse gases than larege ships per unit power, will dodge the regulations. Thus, this study indicated a problem by calculating greenhouse gas emissions of an ocean leisure planning boat (a small ship), and suggested the need for EEDI of small ships.

Keyword Network Analysis for Technology Forecasting (기술예측을 위한 특허 키워드 네트워크 분석)

  • Choi, Jin-Ho;Kim, Hee-Su;Im, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.227-240
    • /
    • 2011
  • New concepts and ideas often result from extensive recombination of existing concepts or ideas. Both researchers and developers build on existing concepts and ideas in published papers or registered patents to develop new theories and technologies that in turn serve as a basis for further development. As the importance of patent increases, so does that of patent analysis. Patent analysis is largely divided into network-based and keyword-based analyses. The former lacks its ability to analyze information technology in details while the letter is unable to identify the relationship between such technologies. In order to overcome the limitations of network-based and keyword-based analyses, this study, which blends those two methods, suggests the keyword network based analysis methodology. In this study, we collected significant technology information in each patent that is related to Light Emitting Diode (LED) through text mining, built a keyword network, and then executed a community network analysis on the collected data. The results of analysis are as the following. First, the patent keyword network indicated very low density and exceptionally high clustering coefficient. Technically, density is obtained by dividing the number of ties in a network by the number of all possible ties. The value ranges between 0 and 1, with higher values indicating denser networks and lower values indicating sparser networks. In real-world networks, the density varies depending on the size of a network; increasing the size of a network generally leads to a decrease in the density. The clustering coefficient is a network-level measure that illustrates the tendency of nodes to cluster in densely interconnected modules. This measure is to show the small-world property in which a network can be highly clustered even though it has a small average distance between nodes in spite of the large number of nodes. Therefore, high density in patent keyword network means that nodes in the patent keyword network are connected sporadically, and high clustering coefficient shows that nodes in the network are closely connected one another. Second, the cumulative degree distribution of the patent keyword network, as any other knowledge network like citation network or collaboration network, followed a clear power-law distribution. A well-known mechanism of this pattern is the preferential attachment mechanism, whereby a node with more links is likely to attain further new links in the evolution of the corresponding network. Unlike general normal distributions, the power-law distribution does not have a representative scale. This means that one cannot pick a representative or an average because there is always a considerable probability of finding much larger values. Networks with power-law distributions are therefore often referred to as scale-free networks. The presence of heavy-tailed scale-free distribution represents the fundamental signature of an emergent collective behavior of the actors who contribute to forming the network. In our context, the more frequently a patent keyword is used, the more often it is selected by researchers and is associated with other keywords or concepts to constitute and convey new patents or technologies. The evidence of power-law distribution implies that the preferential attachment mechanism suggests the origin of heavy-tailed distributions in a wide range of growing patent keyword network. Third, we found that among keywords that flew into a particular field, the vast majority of keywords with new links join existing keywords in the associated community in forming the concept of a new patent. This finding resulted in the same outcomes for both the short-term period (4-year) and long-term period (10-year) analyses. Furthermore, using the keyword combination information that was derived from the methodology suggested by our study enables one to forecast which concepts combine to form a new patent dimension and refer to those concepts when developing a new patent.

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

Effect of LED Light Wavelength on Lettuce Growth, Vitamin C and Anthocyanin Contents (LED광 파장이 상추생육과 비타민 C 및 안토시아닌 함량에 미치는 영향)

  • Choi, Man Kwon;Baek, Gyeong Yun;Kwon, Soon Joo;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.19-25
    • /
    • 2014
  • In this study, we analyzed the growth characteristics of red lettuce under Light-emitting diode (LED) light environment as well as the change of vitamin C and anthocyanins of lettuce. We made five monochromatic light treatments (red 647 nm, 622 nm, blue 463 nm, 450 nm, White), six mixed red (R) and blue (B) light treatments (R : B = 9 : 1, 8 : 2, 7 : 3, 6 : 4, 5 : 5) and red + white, and three light treatments made according to photoperiod of LED with lighting sources ratio of red : blue (R : B = 8 : 2(18/06 h, 15/09 h, 12/12 h)). It was composed of totally 14 control beds. As a result, the red lettuce the most developed leaf height, leaf numbers and fresh weight under red single light, root length and leaf developed when grown under blue single light. Therefore, red light were related to above part of the lettuce, blue light were related to the growth of the underground part of lettuce. Case of the mixed light, leaf height, leaf numbers, fresh/dry weight of above and underground part were highest red + white light and root length and chlorophyll content were highest under red 7 : 3 blue light. Result of growing investigation by photoperiod, the red lettuce were considered to be most effective in 15/09 h (on/off). The content of anthocyanins; the single light source, mixed light and light irradiation period were highest under blue light (463 nm), red 7 : 3 blue and 18/06 h (on/off) light irradiation, respectively. The vitamin C showed the lowest content of $1.26mg{\cdot}L^{-1}$ under the white light, but showed the greatest content of $3.02mg{\cdot}L^{-1}$ for the control group.