• 제목/요약/키워드: Emissions by Year

검색결과 249건 처리시간 0.021초

폐열회수시설이 설비된 생활폐기물 소각자원화시설 온실가스 배출량 산정 시 오차분석 (2009~2013) (Study on the Measurement of GHG Emissions and Error Analysis in Form the MSW Incineration Plant Equipment with the Recovery Heat System (2009~2013))

  • 최원근;서란숙;박승철
    • 한국환경과학회지
    • /
    • 제25권2호
    • /
    • pp.239-246
    • /
    • 2016
  • This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely $CO_2$ with a small amount of $CH_4$ and $N_2O$. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about $3,174,000tCO_2eq$. To look at it by year, the biggest amount was about $877,000tCO_2eq$ in 2013. To look at it by region, Gyeonggido showed the biggest amount (about $163,000tCO_2eq$ annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about $154kCO_2eq$ annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.

Econometric Estimation of the Climate Change Policy Effect in the U.S. Transportation Sector

  • Choi, Jaesung
    • 한국기후변화학회지
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2017
  • Over the past centuries, industrialization in developed and developing countries has had a negative impact on global warming, releasing $CO_2$ emissions into the Earth's atmosphere. In recent years, the transportation sector, which emits one-third of total $CO_2$ emissions in the United States, has adapted by implementing a climate change action plan to reduce $CO_2$ emissions. Having an environmental policy might be an essential factor in mitigating the man-made global warming threats to protect public health and the coexistent needs of current and future generations; however, to my best knowledge, no research has been conducted in such a context with appropriate statistical validation process to evaluate the effects of climate change policy on $CO_2$ emission reduction in recent years in the U.S. transportation. The empirical findings using an entity fixed-effects model with valid statistical tests show the positive effects of climate change policy on $CO_2$ emission reduction in a state. With all the 49 states joining the climate change action plans, the U.S. transportation sector is expected to reduce its $CO_2$ emissions by 20.2 MMT per year, and for the next 10 years, the cumulated $CO_2$ emission reduction is projected to reach 202.3 MMT, which is almost equivalent to the $CO_2$ emissions from the transportation sector produced in 2012 by California, the largest $CO_2$ emission state in the nation.

개·보수 유지관리부문의 이산화탄소 배출량 간이 산정방법에 관한 연구 (A Schematic Estimation Development of the CO2 Emission in the Maintenance of Repair of Apartment Housing)

  • 이강희;안용한;채창우
    • KIEAE Journal
    • /
    • 제13권6호
    • /
    • pp.99-104
    • /
    • 2013
  • Many activities associated with the construction and habitation of buildings are connected with issues affecting the environment such as global warming, climate change, and consumption of valuable natural resources such as fossil fuels. To minimize negative impacts on the environment, the building industry worldwide has implemented green building practices in many countries. One of the main green strategies is to reduce greenhouse gas emissions caused by residential structures because they are most substantially connected with global warming and climate change. To determine the actual quantity of green house gas emissions caused by the construction and use of a building, it is important to analyze total greenhouse gas emissions over the life cycle of buildings including construction, operation & maintenance(O&M) and demolition stages. Many studies suggest methods to calculate greenhouse gas emissions at the construction stage, but the literature addressing greenhouse gas emissions at the O & M stage is limited. A year-long study was conducted utilizing the deterioration method to calculate greenhouse gas emissions at the O & M stage of building life for condominium types of buildings in South Korea. Through this research, it is possible to analyze greenhouse gas emissions of buildings at the O & M stage, the longest span of the life cycle, and eventually help to calculate total greenhouse gas emissions over the life cycle of the building.

Characteristics of Ozone Precursor Emissions and POCP in the Biggest Port City in Korea

  • Song, Sang-Keun;Shon, Zang-Ho;Son, Hyun Keun
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권2호
    • /
    • pp.146-157
    • /
    • 2015
  • Emissions of ozone precursors ($NO_x$ and VOCs) and photochemical ozone creation potentials (POCPs) of VOC emission sources were investigated in the largest port city (i.e., Busan), Korea during the year 2011. This analysis was performed using the Clean Air Policy Support System (CAPSS) national emission inventory provided by the National Institute of Environmental Research (NIER), Korea. For $NO_x$, the emissions from off-road mobile sources in Busan were the most dominant (e.g., $31,202ton\;yr^{-1}$), accounting for about 60% of the total $NO_x$ emissions. The emission from shipping of off-road mobile sources (e.g., $24,922ton\;yr^{-1}$) was a major contributor to their total emissions, amounting to 47% of the total $NO_x$ emissions due to the port-related activities in Busan. For VOCs, the emission source category of solvent usage was predominant (e.g., $36,062ton\;yr^{-1}$), accounting for approximately 82% of the total VOC emissions. Out of solvent usages, the emission from painting was the most dominant ($22,733ton\;yr^{-1}$), comprising 52% of the total emissions from solvent usages. The most dominant VOC species emitted from their sources in Busan was toluene, followed by xylene, butane, ethylbenzene, n-butanol, isopropyl alcohol, and propane. The major emission sources of toluene and xylene were found to be painting of coil coating and ship building, respectively. The value of POCP for the off-road mobile source (61) was the highest in ten major activity sectors of VOC emissions. Since the POCP value of ship transport of off-road mobile source (72) was also high enough to affect ozone concentration, the ship emission can play a significant role in ozone production of the port city like Busan.

2050 탄소중립 시나리오를 적용한 창원시 에너지부문 온실가스 배출산정 및 시나리오 분석 (An Estimation of Greenhouse Gases (GHGs) Emissions from Energy Sector in Changwon City and Scenario Analysis Based on the Application of Carbon Neutral by 2050 in Korea )

  • 김하늘;정재형
    • 한국환경과학회지
    • /
    • 제32권6호
    • /
    • pp.419-428
    • /
    • 2023
  • This study estimates the greenhouse gases (GHGs) emissions from energy sector of Changwon city from 2012 to 2020 and scenario analysis of GHGs reductions pathways in the context of the goal of 2030 NDC and 2050 carbon neutral scenario in Korea. As a result, the GHG emissions as a reference year of carbon neutral in 2018 were estimated as 8,872,641 tonCO2eq accounting for 3,851,786 tonCO2eq (43.6%) of direct source (scope 1) and 4,975,855 tonCO2eq (56.4%) of indirect source (scope 2). Especially, among indirect sources as purchased electricity, manufacturing sector emitted the largest GHG accounting for 33.0%(2,915 thousands tonCO2eq) of the total emissions from all energy sectors, scenario analysis of GHG reductions potential from the energy was analyzed 8,473,614 tonCO2eq and the residual emissions were 354,027 tonCO2eq. Purchased electricity and industry sector reducted the largest GHG accounting for 58.7%(4,976 thousands tonCO2eq) and 42.1%(3,565 thousands tonCO2eq) of the total emissions from all energy sectors, respectively.

운행차 배출가스 정밀검사 결과를 이용한 가솔린 차량에 대한 배출가스 특성 분석 (Analysis of Emission Gas Characteristics for Gasoline Vehicles using the Inspection Results of Car Emission)

  • 노현구
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.128-135
    • /
    • 2018
  • In this study, the following conclusions could be obtained from the analysis of emissions contribution rates and features for contaminated emissions by 13,456 gasoline vehicles passed in the vehicle load test (ASM-idle) under the inspection year 2013 to 2017. It was confirmed that the contamination of the CO, HC, NOx by the displacement is reduced on over 3L engine. As a result of comparing the exhaust gas in the low speed idle mode and the AS2525 mode, the exhaust gas in the low speed idle mode was measured high. It is estimated that if ISG function is applied, emissions from idle condition will be reduced. NOx emissions were reduced when the engine power was above 200HP. It has been confirmed that the amount of exhaust emissions are significantly reduced for vehicles manufactured after 2004. As a result of analyzing the exhaust gas according to the season, it is judged that there is a correlation between HC and NOx according to the ambient temperature. The concentration of exhaust emission in vehicles with high accumulated distance increases, which is considered to be the result of aging of the vehicle.

2011년도 축산부문 온실가스 인벤토리 산정 연구 (Estimation of Greenhouse Gas (GHG) Emissions from Livestock Agriculture in Korea)

  • 양승학;최동윤;조성백;황옥화;박규현
    • 한국축산시설환경학회지
    • /
    • 제20권4호
    • /
    • pp.139-146
    • /
    • 2014
  • This research was conducted to examine the temporal methane ($CH_4$) and nitrous oxide ($N_2O$) emission trends in livestock agriculture from year 1990 to 2011 with Tier 1 national greenhouse gas (GHG) inventory reporting method, which was related to efforts of decreasing GHG emissions and to achievement of voluntary GHG mitigation target. Methane emissions from enteric fermentation were calculated with default $CH_4$ emission factors of IPCC. Methane and $N_2O$ emissions from manure treatment processes were calculated with Tier 1 and mixture of Tier 1 and Tier 2 including $N_2O$ emission factors of manure treatment systems and nitrogen excretion rate of livestock, respectively. According to 2013 National GHG Inventory Monitoring, Reporting, and Verification report, GHG emission fluctuations from enteric fermentation and manure treatment processes were similarto livestock head fluctuation. GHG emissions from enteric fermentation were mainly affected by beef cattle including Hanwoo, while manure treatment processes were affected by various livestock.

수도권 지역별 목표대기질 달성을 위한 오염배출 삭감율 산정 연구 (An Estimation of Emission Reduction Rates to Achieve the Target Air Quality in Seoul Metropolitan Area)

  • 김정수;김지영;홍지형;정동일;반수진;박상남
    • 환경영향평가
    • /
    • 제16권1호
    • /
    • pp.1-13
    • /
    • 2007
  • This study was carried out to estimate the emission reduction rates for the regional allowable emissions by special measures to achieve the target air quality in Seoul Metropolitan Area (SMA). A modeling system was designed to validate the details in enforcement regulations set up by local governments based on the current status and plans for air quality improvement. Modeling system was composed of meteorological model (MM5), emission model (SMOKE), and air quality model (CMAQ). Predicted results by this system show quiet well not only daily air pollutants concentration but also the tendencies of wind direction, wind speed and temperature. To achieve the target air quality in Seoul Metropolitan Area (SMA), emission allowances are estimated by seasons and regions. Referring to the base year 2002, it was estimated that emission reduction rates to achieve the intermediate goal in 2007 were 14.2% and 16.6% for NOx and $PM_{10}$, respectively. It was also estimated that 52% of NOx and 48% of $PM_{10}$ reductions from the base year 2002 would be required to accomplish the air quality improvement goal of 22 ppb for $NO_2$, and $40mg/m^3$ for $PM_{10}$ in year 2014. To improve $NO_2$ and $PM_{10}$ concentration through emissions reduction policies, it was found that emissions reduction for the on-road mobile sources would be the most effective in SMA.

서해지역을 중심으로 한 자연적 황화합물의 배출과 순환에 대한 연구 (Emissions of Sulfur Compounds and The Significance of Their Cycling in the Western Korea Sea)

  • 김기현;이강웅
    • 한국환경보건학회지
    • /
    • 제24권3호
    • /
    • pp.77-86
    • /
    • 1998
  • The concentrations of atmospheric dimethylsulfide (DMS) and the relevant environmental parameters were measured as part of the 3rd year project (August 1997-July 1998) to investigate the long range transport of atmospheric pollutants (LRTAP) between China and Korea. The main purpose of this study was to derive the contribution of natural sulfur emissions (represented by oceanic DMS fluxes) in estimating the total budgets of sulfur transported across the Yellow Sea. To this end, DMS concentrations were determined from the two western coastal monitoring sites (Cheju and Kang Hwa islands) during three field intensive experiments covering fall, winter, and spring seasons. From these series of experiments, we found that DMS concentrations of Cheju and Kang Iffwa were averaged at 74 $\pm$ 49.5 (range: 19~282 pptv (N=81)) and 63.7 $\pm$ 35.1 (range:25.8~131 pptv (N=19)), respectively. By combining these 3rd year data with those measured previously from the 2nd year, we were able to derive some general pictures of seasonal distribution patterns of DMS. Although DMS data were difficult to derive relationships with other parameters determined simultaneously, they were rarely exhibiting good correlations with temperature or wind speed. The oceanic flux of DMS for the western coastal regions of Korea, when estimated based on our data from two islands, was found on the range of 8.8~12.2 GgS/yr. By considering the relationship between DMS and non-seasalt sulfate, we could also provide rough estimate of relative significance of natural emissions of sulfur. If oceanic DMS emitted from those regions is entirely converted to sulfate, it could represent 10 to 25% of total sulfur budgets in the western Sea of Korea.

  • PDF

유사휘발유 사용에 의한 BTX 배출량 추정 (Estimation of BTX Emission Using Pseudo-gasoline)

  • 전소영;김정;장영기;정봉진
    • 한국대기환경학회지
    • /
    • 제28권5호
    • /
    • pp.527-537
    • /
    • 2012
  • The increasing consumption of pseudo-petroleum products (PPP) has been disturbing the national petroleum market. The use of PPP lead to tax evasion, disturbance of sound trading principles, component corrosion of cars, and explosion accident. Also, PPP have emitted hazardous air pollutants (HAP) including the carcinogenic aromatic hydrocarbons, PAHs and aldehydes more than regular-petroleum products. It thus has potentials to cause many environmental and health care problems. In this study, benzene, toluene and xylene emissions from road transport vehicles due to the use of pseudo-gasoline are estimated for the year 2008. The results of our study provide emission estimates of benzene, toluene and xylene for the year as 405, 1,711, 717 tonne/yr, respectively for regular-gasoline. BTX emissions are calculated as 452~515, 1,882~2,264 and 732~752 tonne/yr when the amount of pseudo-gasoline is estimated to account for 6~13% for regular-gasoline consumption. BTX emissions increased as much as 12~27, 10~32, 2~5% by using pseudo-gasoline. It is found that the pseudo-gasoline should be the key component to produce HAP in urban area.