• 제목/요약/키워드: Emission spectroscopy

검색결과 1,164건 처리시간 0.034초

Toward Efficacy Improvement in a PDP Discharge Cell from Structural Considerations

  • Tachibana, Kunihide
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.20-23
    • /
    • 2009
  • The efficacy improvement issues in a unit discharge cell have been approached from the structural considerations. The tested cell designs include (a) a coplanar type with annular auxiliary electrode buried in barrier ribs, (b) a coplanar type with split auxiliary electrodes also burred in barrier ribs and (c) a coaxial type with a floating electrode stacked on the base electrode. From spatiotemporally resolved optical images of near-IR emission taken by a gated-ICCD camera and relative VUV emission intensity estimated by laser absorption spectroscopy, the differences in the discharge and light emission performances of those three cell types have been compared and discussed.

  • PDF

Haematococcus pluvialis Cell-Mass Sensing Using Ultraviolet Fluorescence Spectroscopy

  • Lababpour, Abdolmajid;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.1922-1929
    • /
    • 2007
  • A simple whole-cell-based sensing system is proposed for determining the cell mass of H. pluvialis using ultraviolet fluorescence spectroscopy. An emission signal at 368 nm was used to detect the various kinds of green, green-brown, brown-red, and red H. pluvialis cells. The fluorescence emission intensities of the cells were highest at 368 nm with an excitation wavelength of 227 nm. An excitation wavelength of 227 nm was then selected for cell-mass sensing, as the emission fluorescence intensities of the cell suspensions were highest at this wavelength after subtracting the background interference. The emission fluorescence intensities of HPLC-grade water, filtered water, and HPLC-grade water containing a modified Bold's basal medium (MBBM) were measured and the difference was less than 1.6 for the selected wavelengths. Moreover, there was no difference in the emission intensity at 368 nm among suspensions of the various morphological states of the cells. A calibration curve of the fluorescence emission intensities. and cell mass was obtained with a high correlation ($R^2=0.9938$) for the various morphological forms of H. pluvialis. Accordingly, the proposed method showed no significant dependency on the various morphological cell forms, making it applicable for cell-mass measurement. A high correlation was found between the fluorescence emission intensities and the dry cell weight with a mixture of green, green-brown, brown-red, and red cells. In conclusion, the proposed model can be directly used for cell-mass sensing without any pretreatment and has potential use as a noninvasive method for the online determination of algal biomass.

탄소 나노튜브 위에 붕소 및 탄소 질화 박막이 코팅된 이종접합 구조 미세팁의 전자방출 특성 (Electron Emission Properties of Hetero-Junction Structured Carbon Nanotube Microtips Coated With BN And CN Thin Films)

  • 노영록;김종필;박진석
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.743-748
    • /
    • 2010
  • Boron nitride (BN) and carbon nitride (CN) films, which have relatively low work functions and commonly exhibit negative electron affinity behaviors, were coated on carbon nanotubes (CNTs) by magnetron sputtering. The CNTs were directly grown on metal-tip (tungsten, approximately 500nm in diameter at the summit part) substrates by inductively coupled plasma-chemical vapor deposition (ICP-CVD). The variations in the morphology and microstructure of CNTs due to coating of the BN and CN films were analyzed by field-emission scanning electron microscopy (FE-SEM). The energy dispersive x-ray (EDX) spectroscopy and Raman spectroscopy were used to identify the existence of the coated layers (CN and BN) on CNTs. The electron-emission properties of the BN-coated and CN-coated CNT-emitters were characterized using a high-vacuum field emission measurement system, in terms of their maximum emission currents ($I_{max}$) at 1kV and turn-on voltage ($V_{on}$) for approaching $1{\mu}A$. The results showed that the $I_{max}$ current was significantly increased and the $V_{on}$ voltage were remarkably reduced by the coating of CN or BN films. The measured values of $I_{max}-V_{on}$ were as follows; $176{\mu}A$-500V for the 5nm CN-coated emitter and $289{\mu}A$-540V for the 2nm BN-coated emitter, respectively, while the $I_{max}-V_{on}$ of the as-grown (i.e., uncoated) emitter was $134{\mu}A$-620V. In addition, the CNT emitters coated with thin CN or BN films also showed much better long-term (up to 25h) stability behaviors in electron emission, as compared with the conventional CNT emitter.

Study on visible emission of Cu-ion-doped perovskite hafnate in view of excitation energy dependence

  • Lee, D.J.;Lee, Y.S.;Noh, H.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권4호
    • /
    • pp.8-11
    • /
    • 2015
  • We studied on the visible emission of Cu-ion-doped perovskite hafnate $SrHfO_3$ (SHO:Cu) with the photo-excitation energy dependence. The polycrystalline SHO:Cu samples were newly synthesized in the solid state reaction method. From the X-ray diffraction measurement it was found that the crystalline structure of SHO:Cu is nearly identical to that of undoped $SrHfO_3$. Interestingly, the photoluminescence excitation (PLE) spectra change significantly with the emission energy, which is linked to the strong dependence of the visible emission on the photo-excitation energy. This unusual emission behavior is likely to be associated with the mixed valence states of the doped Cu ions, which were revealed by X-ray photoelectron spectroscopy. We compared our finding of tunable visible emission in the SHO:Cu compounds with the cases of similar materials, $SrTiO_3$ and $SrZrO_3$ with Cu-ion-doping.

Consideration of Temperature and Slip Correction for Photothermal Spectrometry

  • Lee, Jeonghoon
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.86-90
    • /
    • 2015
  • Temperature was considered to estimate the minimum detectable absorption coefficient of aerosol particles from photothermal spectroscopy. Light energy absorbed by subsequent emission from the aerosol results in the heating of the aerosol sample and consequently causes a temperature change as well as changes in thermodynamic parameters of the sample. This thermal effect is the basis of photothermal spectroscopy. Photothermal spectroscopy has several types of techniques depending on how the photothermal effects are detected. Photothermal interferometry traces the photothermal effect, refractive index, using an interferometer. Photoacoustic spectroscopy detects the photothermal effect, sound wave, using a microphone. In this study, it is suggested that the detection limit for photothermal spectroscopy can be influenced by the introduction of a slip correction factor when the light absorption is determined in a high temperature environment. The minimum detectable absorption coefficient depends on the density, the specific heat and the temperature, which are thermodynamic properties. Without considering the slip correction, when the temperature of the environment is 400 K, the minimum detectable absorption coefficient for photothermal interferometry increases approximately 0.3% compared to the case of 300 K. The minimum detectable absorption coefficient for photoacoustic spectroscopy decreases only 0.2% compared to the case of 300 K. Photothermal interferometry differs only 0.5% point from photoacoustic spectroscopy. Thus, it is believed that photothermal interferometry is reliably comparable to photoacoustic spectroscopy under 400 K.

RF and Optical properties of Graphene Oxide

  • 임주환;;윤형서;오주영;정영모;박형구;전성찬
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.68.1-68.1
    • /
    • 2012
  • The best part of graphene is - charge-carriers in it are mass less particles which move in near relativistic speeds. Comparing to other materials, electrons in graphene travel much faster - at speeds of $10^8cm/s$. A graphene sheet is pure enough to ensure that electrons can travel a fair distance before colliding. Electronic devices few nanometers long that would be able to transmit charge at breath taking speeds for a fraction of power compared to present day CMOS transistors. Many researches try to check a possibility to make it a perfect replacement for silicon based devices. Graphene has shown high potential to be used as interconnects in the field of high frequency electrical devices. With all those advantages of graphene, we demonstrate characteristics of electrical and optical properties of graphene such as the effect of graphene geometry on the microwave properties using the measurements of S-parameter in range of 500 MHz - 40 GHz at room temperature condition. We confirm that impedance and resistance decrease with increasing the number of graphene layer and w/L ratio. This result shows proper geometry of graphene to be used as high frequency interconnects. This study also presents the optical properties of graphene oxide (GO), which were deposited in different substrate, or influenced by oxygen plasma, were confirmed using different characterization techniques. 4-6 layers of the polycrystalline GO layers, which were confirmed by High resolution transmission electron microscopy (HRTEM) and electron diffraction analysis, were shown short range order of crystallization by the substrate as well as interlayer effect with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups on its layers. X-ray photoelectron Spectroscopy (XPS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation, and Fourier Transform Infrared spectroscopy (FTIR) and XPS analysis shows the changes in oxygen functional groups with nature of substrate. Moreover, the photoluminescent (PL) peak emission wavelength varies with substrate and the broad energy level distribution produces excitation dependent PL emission in a broad wavelength ranging from 400 to 650 nm. The structural and optical properties of oxygen plasma treated GO films for possible optoelectronic applications were also investigated using various characterization techniques. HRTEM and electron diffraction analysis confirmed that the oxygen plasma treatment results short range order crystallization in GO films with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups. In addition, Electron energy loss spectroscopy (EELS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation and XPS analysis shows that epoxy pairs convert to more stable C=O and O-C=O groups with oxygen plasma treatment. The broad energy level distribution resulting from the broad size distribution of the $sp^2$ clusters produces excitation dependent PL emission in a broad wavelength range from 400 to 650 nm. Our results suggest that substrate influenced, or oxygen treatment GO has higher potential for future optoelectronic devices by its various optical properties and visible PL emission.

  • PDF

원추형 기판 위에 탄소 나노튜브의 선택적 성장이 전계방출 특성에 미치는 영향 (Effects of Selective Growth on Electron-emission Properties of Conical-type Carbon Nanotube Field-emitters)

  • 김부종;노영록;박진석
    • 반도체디스플레이기술학회지
    • /
    • 제11권1호
    • /
    • pp.61-65
    • /
    • 2012
  • In this study, for use of carbon nanotubes (CNTs) as a cold cathode of x-ray tubes, we examine the effects of selective growth of CNTs on their field emission properties and long-term stability. The selective growth of CNTs was performed by selectively etching the catalyst layer which was used for CNTs' nucleation. CNTs were grown on conical-type tungsten substrates using an inductively-coupled plasma chemical vapor deposition system. For all the grown CNTs, their morphologies and microstructures were analyzed by field-emission scanning electron microscope and Raman spectroscopy. The electron-emission properties of CNTs and the long-term stability of emission currents were measured and characterized according to the CNTs' growth position on the substrate.

이온빔 스퍼터링으로 제작된 다이아몬드성 카본 필름의 전계 방출 특성 (Field emission properties of diamond-like carbon films deposited by ion beam sputtering)

  • 안상혁;이광렬;전동렬
    • 한국진공학회지
    • /
    • 제8권1호
    • /
    • pp.36-42
    • /
    • 1999
  • 이온빔 스퍼터링 방법으로 n-type si 기판에 고팅된, 수소를 함유하지 않은 다이아몬드성 카본 필름의 전계 방출 특성을 조사하였다. 필름의 구조나 두께에 관계없이 전계 방출 전류는 양극과 시편의 표면사이에서 발생하는 electrical breakdown에 의해 현저히 증가하였으며, 이때의 effective work function은 약 0.1eV의 작은 값을 가지고 있었다. 텅스텐 tip을 이용하여 breakdown에 의해 발생한 시편표면의 손상수위 근처를 scanning 하면서 전계 방출 전류를 측정하여, 전계 방출이 일어나는 정확한 위치를 확인하였다. 전계 방출은 breakdown에 의해 발생한 표면 손상 부위의 모든 곳에서 균일하게 일어나는 것이 아니라 특정 부위에서 집중적으로 관찰되었다. Auger electron spectroscopy와 SEM을 이용한 분석을 통해 손상 부위 중 Si과 C의 화합물이 형성된 곳에서만 절계 방출이 일어나고 있음을 알 수 있었으며, 손상부위의 형상변화는 전계 방출의 충분조건이 아니었다. 본 연구의 결과는 breakdown에 의한 전기 방출 전류의 증가는 시편 표면의 형상 변화에 의한 전계증진의 효과보다는 표면에서 발생하는 화학적 결합의 변화에 기인하고 있음을 보여준다.

  • PDF

저주파 및 고주파 구동 대기압 플라즈마 젯의 특성 비교

  • 권양원;백은정;엄인섭;조혜민;김선자;정태훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.194.2-194.2
    • /
    • 2016
  • 저주파 (수십 kHz)와 고주파 (13.56 MHz)로 구동되는 대기압 플라즈마 젯을 발생시키고, 인가전압 (혹은 인가전력)과 기체 유량에 따른 대기압 플라즈마의 특성을 비교하였다. 고주파에서 발생된 플라즈마는 저주파의 경우보다 안정적이었으며, 인가전압 (혹은 인가전력)이 증가함에 따라 플라즈마 기체온도는 상승하였고, 고주파 젯의 기체온도는 저주파 젯 보다 높았으나 330 K이하인 것을 확인하였다. Optical Emission Spectroscopy (OES)를 이용하여 저주파와 고주파의 광 방출 특성을 측정하였다. 저주파에서는 $N_2{^+}$ (391.4 nm)의 intensity 증가가 두드러지게 나타났지만 고주파 젯에서는 $N_2$, $N_2{^+}$의 intensity는 감소하였으며, OH, NO, $H_{\alpha}$, O와 같은 활성 산소 종 (Reactive Oxygen Species)이 저주파 젯 보다 높게 측정되었다. Boltzmann plot method를 이용한 분석을 통해 저주파와 고주파 영역에서의 플라즈마 전자 여기 온도를 측정하였다. 또한 자외선 흡수분광법을 이용하여 플라즈마-액체 계면에서의 OH이 입자밀도를 측정하여 OES방법으로 측정한 OH 밀도와 비교하였다. 그리고 화학적 측정법 (terephtalic acid solution)을 이용하여 액체 내의 OH의 농도를 측정하였다.

  • PDF

SiON 박막의 광학적 특성에 대한 연구 (The study of SiON thin film for optical properties.)

  • 김도형;임기주;김기현;김현석;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.247-250
    • /
    • 2001
  • We studied optical properties of SiON thin-film in the applications of optical waveguide. SiON thin-film was grown in $300^{\circ}C$ by PECVD(plasma enhanced chemical vapor deposition) system. The change of SiON thin-film composition and refractive Index was studied as a function of varying $NH_3$ gas flow rate. As $NH_3$ gas flow rate was increased, Quantity of N and refractive index were increased at the same time. By the results, we could form the SiON thin-film to use of a waveguide with refractive index of 1.6. We analyzed the conditions of the thin-film with FTIR(fourier transform infrared) and OES (optical emission spectroscopy). N-H bonding($3390cm^{-1}$ ) can be removed by thermal annealing. And we could observe the SiH bonding state and quantity by OES analysis in $SiH_4$

  • PDF