• Title/Summary/Keyword: Emission microscope

Search Result 561, Processing Time 0.03 seconds

Die-sinking Electrical Discharge Machining with Ultrasonic Emission for Ceramic Matrix Composite (초음파 진동 부가에 의한 세라믹 복합체의 형조방전가공)

  • Wang, Duck-Hyun;Woo, Jeong-Yun;Yun, Jon-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.9-15
    • /
    • 1999
  • Die-sinking electrical discharge machining(EDM) for conductive ceramic matrix composite(CMC) of Tic/$Al_2O_3$ was experienced with addition of ultrasonic emission, and the results were compared with ones obtained by the EDM only. From this experimental study, the values of material removal rate(MRR) and surface roughness($R_{max}$), scanning electron microscope(SEM) micrographs, and weibull probability distribution of bending strength for the specimens were obtained and compared. The trend of MRR was found to be increased slightly with the current and the duty factor for both EDM only and EDM with ultrasonic emission. The MRR values were found to be increased for EDM with ultrasonic emission. The SEM micrographs of EDMed surface by under various operating conditions showed less micro cracks in various places. Although smaller bending strength value was obtained by EDMed surface with ultrasonic emission by weibull probability distribution analysis of bending strength.

  • PDF

The Etching Characteristics of Cr Films by Using $Cl_{2}O_{2}$ Gas Mixtures ($Cl_{2}O_{2}$ 가스에 의한 크롬 박막의 식각 특성 고찰)

  • 박희찬;강승열;이상균;최복길;권광호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.634-639
    • /
    • 2001
  • We investigated the etching characteristics of chromium films by using Cl$_2$/O$_2$ gas mixtures with electron cyclotron resonance plasma. In order to examine the chemical etch characteristics of Cr films by using Cl$_2$/O$_2$ gas plasma, we obtained the etch rate with various gas mixing ratios. By X-ray photoelectron spectroscopy, the surface reaction on the chromium films during the etch was examined. From narrow scan analyses of Cr, Cl, and O, it was confirmed that a chromium oxychlorie (CrCl$_{x}$O$_{y}$) layer was formed on the surface by the etch using Cl$_2$/O$_2$ gas mixtures. We observed a new characteristic emission line during the etch of chromium films using Cl$_2$/O$_2$ gas mixtures by an optical emission spectroscopy. It was found that the peak intensity of this emission line had a tendency compatible with the etch rate. The origin of this emission line was discussed in detail. At the same time, the etched profile was also examined by scanning electron microscope.e.e.

  • PDF

Fast liquid crystal switching performance on indium zinc oxide films with low curing temperature via ion-beam irradiation (이온빔 조사된 저온 소성 인듐 아연 산화막을 이용한 액정의 고속 스위칭 특성 연구)

  • Oh, Byeong-Yun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.904-909
    • /
    • 2019
  • Using the ion-beam irradiated indium zinc oxide (IZO) films which was cured at $100^{\circ}C$, uniform LC and homogeneous alignment of liquid crystal (LC) molecules was achieved. The IZO film was deposited on the glass substrate at the curing temperature of $100^{\circ}C$ and irradiated by the ion-beam which is an LC alignment method. To verify the LC alignment characteristics, polarizing optical microscope and the crystal rotation method were used. Additionally, it was confirmed that the LC cell with the IZO films had an enough thermal budget for high-quality LC applications. Field emission scanning electron microscope was conducted as a surface analysis to evaluate the effect of the ion-beam irradiation on the IZO films. Through this, it was revealed that the ion-beam irradiation induced rough surface with anisotropic characteristics. Finally, electro-optical (EO) performances of the twisted-nematic cells with the IZO films were collected and it was confirmed that this cell had better EO performances than the conventional rubbed polyimide. Furthermore, the polar anchoring energy was measured and a suitable value for stable LC device operation was achieved.

Acoustic Emission during Crack Propagation Process of Rubber-Modified Epoxy Resin (고무변성 에폭시 수지의 균열진전과정과 음향방출 특성)

  • 이덕보;김현수;최낙삼;남기우;문창권
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2003
  • The damage zone around a crack tip occurring before the fracture is a significant domain. which affects the toughening mechanism of materials. In this study. the growth process of damage zone in the vicinity of crack tip for rubber-modified epoxy resin is investigated using an acoustic emission(AE) analysis. The weight fractions of rubber(CTBN 1300$\times$B) in rubber-modified epoxy resin are 5 wt% and 15 wt%. The fracture toughness($K_{IC}$) and the fracture energy($G_{IC}$) were measured using 3 point bending single-edge notched specimens. The damage zone and rubber particles distributed around the crack tip were observed by a polarized optical microscope and an atomic force microscope(AFM). The damage zone around crack tip of rubber-modified epoxy resin was formed at 13 % loading and developed until 57 % loading of the fracture load. The crack initiated at 57 % loading grew repeatedly in the stick-slip propagation behavior. Based on time-frequency analysis, it was confirmed that AE signals with frequency bands of 0.15~0.20 MHz and 0.20~0.30 MHz were generated from cavitation and stable/unstable cracking inside the damage zone.

Interfacial Evaluation of Flax and Hemp Fibers/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp섬유 강화된 Polypropylene 복합재료의 계면 물성 평가)

  • Son, Tran-Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Interfacial evaluation of various combinations of both Flax and Hemp fibers/polypropylene were performed by using micromechanical test and nondestructive acoustic emission (AE). It can be because interfacial adhesion between the natural fiber surface and matrix plays an important role in controlling the overall mechanical properties of polymer composite materials by transferring the stress from the matrix to the fiber. It is necessary to characterize the interphase and the level of adhesion to understand the performance of the composites properly. Microfailure mechanism of single Flax fiber bundles were investigated using the combination of single fiber tensile test and nondestructive acoustic emission. Microfailure modes of the different natural fiber/polypropylene systems were observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

Synthesis and Characterization of Soluble Polyaniline and TiO2 Composite

  • Kim, Byoung-Ju;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.71-74
    • /
    • 2015
  • Soluble polyaniline was synthesized by attaching titanium isoproxide ($Ti(OPr)_4$) to the amine group of the aniline. Approximately 1 to 1 molar ratio of aniline and $Ti(OPr)_4$ was mixed and polymerized with ammonium persulfate. The FTIR result showed clear difference between $TiO_2$-aniline composite ($TiO_2An$) and $TiO_2$-polyaniline composite ($TiO_2PAn$). Although the $TiO_2An$ had negligible UV-visible absorption, the $TiO_2PAn$ showed strong absorption in the UV-visible region. Photoluminescence (PL) peaks of $TiO_2An$ were shifted toward red with the reduction of the excitation energy, which could be due to the multiple emission centers. The luminescence peak shift stopped at 501 nm. The PL spectra of $TiO_2PAn$ exhibited three emission peaks at 2.88 eV (430 nm), 2.48 eV (501 nm) and 2.22 eV (558 nm). The new emission center (2.22 eV) was observed after polymerization. Field emission scanning electron microscope image showed crack-free composite film.

Spinning Multi Walled Carbon Nanotubes and Flexible Transparent Sheet Film

  • Jang, Hun-Sik;Lee, Seok-Cheol;Kim, Ho-Jong;Jeong, In-Hyeon;Park, Jong-Seo;Nam, Seung-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.200-200
    • /
    • 2012
  • We investigated a flexible transparent film using the spinning multi-walled carbon nanotubes (MWCNTs). Spin-capable MWCNTs on iron catalyzed on a SiO2 wafer was grown by chemical vapor deposition, which was performed at $780^{\circ}C$ using C2H2 and H2 gas. The average diameter and length of MWCNTs grown on the substrate were ~15 nm and $250{\sim}300{\mu}m$, respectively. The MWCNT sheets were produced by continuously pulling out from well-aligned MWCNTs on a substrate. The MWCNT sheet films were produced simply by direct coating on the flexible film or grass. The thickness of sheet film was remarkably decreased by alcohol spraying on the surface of sheet. The alcohol splay increased transmittance and decreased electrical resistance of MWCNT sheet films. Single and double sheets were produced with sheet resistance of ~699 and ${\sim}349{\Omega}/sq$, respectively, transmittance of 81~85 % and 67~72%, respectively. The MWCNT sheet films were heated through the application of direct current power. The flexible transparent heaters showed a rapid thermal response and uniform distribution of temperature. In addition, MWCNT yarns were prepared by spinning a bundle of MWCNTs from vertically super-aligned MWCNTs on a substrate, and field emission from the tip and side of the yarns was induced in a scanning electron microscope. We found that the field emission behavior from the tip of the yarn was better than the field emission from the side. The field emission turn-on voltages from the tip and side of MWCNT yarns were 1.6 and $1.7V/{\mu}m$, respectively, after the yarn was subjected to an aging process. Both the configuration of the tip end and the body of the yarn were changed remarkably during the field emission. We also performed the field emission of the sheet films. The sheet films showed the turn on voltage of ${\sim}1.45V/{\mu}m$ during the field emission.

  • PDF

The Inhibitor Effect of (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc(II) Chloride, an Industrial Cationic Azo Dye, onto Reducing Acidic Corrosion Rate of Mild Steel

  • Ozkir, Demet;Kayakirilmaz, Kadriye
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.257-272
    • /
    • 2020
  • This study covers the stages of testing whether the azo dye with chemical name (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc (II) chloride (DMT), known as Maxilon Red GRL in the dye industry, can be used as an anticorrosive feasible inhibitory agent, especially in industrial areas other than carpet, yarn and fibre dyeing. These test stages consist of the electrochemical measurement techniques such as potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) for diverse concentrations and durations. The adsorption of the viewed DMT molecule on the mild steel surface obeyed the Langmuir isotherm. The zero charge potential (PZC) of mild steel was also found to assess the inhibition mechanism in containing DMT solution. The inhibition performance of DMT on the mild steel in a 1.0 M HCl solution was also investigated using methods such as metal microscope, atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM).

Production and Properties of Amorphous TiCuNi Powders by Mechanical Alloying and Spark Plasma Sintering

  • Kim, J.C.;Kang, E.H.;Kwon, Y.S.;Kim, J.S.;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • In present work, amorphous TiCuNi powders were fabricated by mechanical alloying process. Amorphization and crystallization behaviors of the TiCuNi powders during high-energy ball milling and subsequent microstructure changes were studied by X-ray diffraction and transmission electron microscope. TEM samples were prepared by the focused ion beam technique. The morphology of powders prepared with different milling times was observed by field-emission scanning electron microscope and optical microscope. The powders developed a fine, layered, homogeneous structure with milling times. The crystallization behavior showed that glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 628, 755 and 127K, respectively. The as-prepared amorphous TiCuNi powders were consolidated by spark plasma sintering process. Full densified TiCuNi samples were successfully produced by the spark plasma sintering process. Crystallization of the MA powders happened during sintering at 733K.

Two Dimensional Gold Nanodot Arrays Prepared by Using Self-Organized Nanostructure

  • Jung Kyung-Han;Chang Jeong-Soo;Kwon Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.246-250
    • /
    • 2006
  • Highly ordered gold nanodot arrays have been successfully obtained by vacuum evaporation using an anodic aluminum oxide (AAO) as a shadow mask. An AAO mask with the thickness of 300 um was prepared through an anodization process. The structure of the nanodot arrays was studied by a field- emission scanning electron microscope (FE-SEM) equipped with an energy dispersive spectrometer (EDS). A tapping mode atomic force microscope (AFM) was employed for studies of height and phase feature. The nanodot arrays were precisely reproduced corresponding to the hexagonal structure of the AAO mask in a large area. In the gold nanodot arrays, the average diameter of dots is approximately the same as the AAO pore size in the range from 70 um to 80 nm and 100 nm center-to-center spacing. EDS analysis indicated that the gold dots were almost entirely consisted of gold, a highly demanded material.