• 제목/요약/키워드: Emission inventory

검색결과 251건 처리시간 0.028초

생활폐기물 특성 분석 및 소각시설의 CO2 배출량 평가 (Property Analysis of Municipal Solid Waste and Estimation of CO2 Emissions from Waste Incinerators)

  • 김병순;김신도;김창환;이태정
    • 한국대기환경학회지
    • /
    • 제26권6호
    • /
    • pp.657-665
    • /
    • 2010
  • Carbon dioxide ($CO_2$) is known to be a major greenhouse gas partially emitted from waste combustion facilities. According to the greenhouse gas emission inventory in Korea, the quantity of the gas emitted from waste sector in 2005 represents approximately 2.5 percent of all domestic greenhouse gas emission. Currently, the emission rate of greenhouse gas from the waste sector is relatively constant partly because of both the reduced waste disposal in landfills and the increased amounts of waste materials for recycling. However, the greenhouse gas emission rate in waste sectors is anticipated to continually increase, mainly due to increased incineration of solid waste. The objective of this study was to analyze the property of Municipal Solid Waste (MSW) and estimate $CO_2$ emissions from domestic MSW incineration facilities. The $CO_2$ emission rates obtained from the facilities were surveyed, along with other two methods, including Tier 2a based on 2006 IPCC Guideline default emission factor and Tier 3 based on facility specific value. The $CO_2$ emission rates were calculated by using $CO_2$ concentrations and gas flows measured from the stacks. Other parameters such as waste composition, dry matter content, carbon content, oxidation coefficient of waste were included for the calculation. The $CO_2$ average emission rate by the Tier 2a was 34,545 ton/y, while Tier 3 was 31,066 ton/y. Based on this study, we conclude that Tier 2a was overestimated by 11.2 percent for the $CO_2$ emission observed by Tier 3. Further study is still needed to determine accurate $CO_2$ emission rates from municipal solid waste incineration facilities and other various combustion facilities by obtaining country-specific emission factor, rather than relying on IPCC default emission factor.

강원도 산림의 임상별, 수종별 탄소저장량 및 온실가스 흡수량 산정 (Estimation of the Carbon Stock and Greenhouse Gas Removals by Tree Species and Forest Types in Gangwon Province)

  • 이선정;임종수;손영모;김래현
    • 한국기후변화학회지
    • /
    • 제6권4호
    • /
    • pp.303-310
    • /
    • 2015
  • This study was conducted to estimate of carbon stock and greenhouse gas (GHGs) removals by tree species and forest type at Gangwon province. We used a point sampling data with permanent sample plots in national forest inventory and national emission factors. GHGs emissions was caclulated using the stock change method related to K-MRV and IPCC guidance. Total carbon stock and greenhouse gas removals were high in deciduous forest and species than in coniferous. The range of annual net greenhouse gas emissions in other deciduous species was from $-11,564.83Gg\;CO_2\;yr^{-1}$ to $-13,500.60Gg\;CO_2\;yr^{-1}$ during 3 years (2011~2013). On the other hand, coniferous forest was temporally converted to source due to reducing of growing stock in 2012. It was that growing stocks and forest area were likely to reduce by the deforestation and clear cutting. This study did not consider other carbon pools (soil and dead organic matter) due to the lack of data. This study needs to complement the activity data and emission factors, and then will find the way to calculate the greenhouse gas emissions and removals in the near future.

국산 구조용 집성재의 환경부하 정량화를 위한 온실가스 배출량 분석 (Assessment of Carbon Emission for Quantification of Environmental Load on Structural Glued Laminated Timber in Korea)

  • 장윤성;김세종;손휘림;이상준;심국보;여환명;김광모
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권3호
    • /
    • pp.449-456
    • /
    • 2016
  • 본 연구의 목적은 국산 구조용 집성재를 대상으로, 제조과정의 탄소배출을 정량화하고 탄소배출 저감방안을 제시하는 것이다. 총 2개소의 구조용 집성재 제조업체를 대상으로 원료, 수송, 제조 공정, 제조에 의한 에너지소비량 등을 현장 실사하였다. 현장에서 수집한 자료 및 구축된 전과정목록과 같은 관련문헌을 토대로 단위부피당 탄소배출을 정량화하였다. 국산 구조용 집성재의 제재 및 건조, 집성 공정별 온실가스 배출결과는 각각 31.0, 109.0, 94.2 kg $CO_2eq./m^3$으로 나타났다. 수입 구조용 집성재와 비교하였을 때 약 13% 온실가스를 적게 배출하는 것으로 나타났다. 또한 기존의 건조 에너지원을 바이오매스로 전환시에는 기존 대비 37%의 온실가스를 감축하여 친환경성을 제고할 수 있을 것으로 판단되었다. 본 결과는 향후 목조주택의 환경성을 규명하기 위한 전과정평가 수행 시, 투입된 목재제품의 전과정목록분석을 위한 기초자료로 활용될 것으로 기대된다.

수간곡선식 개발과 국가탄소배출계수를 이용한 졸참나무의 탄소저장량 추정 (Estimation of Carbon Stock by Development of Stem Taper Equation and Carbon Emission Factors for Quercus serrata)

  • 강진택;손영모;전주현;유병오
    • 한국기후변화학회지
    • /
    • 제6권4호
    • /
    • pp.357-366
    • /
    • 2015
  • This study was conducted to estimate carbon stocks of Quercus serrata with drawing volume of trees in each tree height and DBH applying the suitable stem taper equation and tree specific carbon emission factors, using collected growth data from all over the country. Information on distribution area, tree number per hectare, tree volume and volume stocks were obtained from the $5^{th}$ National Forest Inventory (2006~2010), and method provided in IPCC GPG was applied to estimate carbon storage and removals. Performance in predicting stem diameter at a specific point along a stem in Quercus serrata by applying Kozak's model,$d=a_1DBH^{a_2}a_3^{DBH}X^{b_1Z^2+b_2ln(Z+0.001)+b_3{\sqrt{Z}}+b_4e^Z+b_5({\frac{DBH}{H}})}$, which is well known equation in stem taper estimation, was evaluated with validations statistics, Fitness Index, Bias and Standard Error of Bias. Consequently, Kozak's model turned out to be suitable in all validations statistics. Stem volume tables of Quercus serrata were derived by applying Kozak's model and carbon stock tables in each tree height and DBH were developed with country-specific carbon emission factors ($WD=0.65t/m^3$, BEF=1.55, R=0.43) of Quercus serrata. As a result of carbon stock analysis by age class in Quercus serrata, carbon stocks of IV age class (11,358 ha, 36.5%) and V age class (10,432; 33.5%) which take up the largest area in distribution of age class were 957,000 tC and 1,312,000 tC. Total carbon stocks of Quercus serrata were 3,191,000 tC which is 3% compared with total percentage of broad-leaved forest and carbon sequestration per hectare(ha) was 3.8 tC/ha/yr, $13.9tCO_2/ha/yr$, respectively.

남한지역 자연 배출량 산정 및 대기질 모사를 이용한 평가 (Estimation of Biogenic Emissions over South Korea and Its Evaluation Using Air Quality Simulations)

  • 김순태;문난경;조규탁;변대원;송은영
    • 한국대기환경학회지
    • /
    • 제24권4호
    • /
    • pp.423-438
    • /
    • 2008
  • BEIS2 (Biogenic Emissions Inventory System version 2) and BEIS3.12 (BEIS version 3.12) were used to estimate hourly biogenic emissions over South Korea using a set of vegetation and meteorological data simulated with the MM5 (Mesoscale Model version 5). Two biogenic emission models utilized different emission factors and showed different responses to solar radiations, resulting in about $10{\sim}20%$ difference in the nationwide isoprene emission estimates. Among the 11-vegetation classes, it was found that mixed forest and deciduous forest are the most important vegetation classes producing isoprene emissions over South Korea comprising ${\sim}90%$ of the total. The simulated isoprene concentrations over Seoul metropolitan area show that diurnal and daily variations match relatively well with the PAMS (Photochemical Air Monitoring Station) measurements during the period of June 3${\sim}$June 10, 2004. Compared to BEIS2, BEIS3.12 yielded ${\sim}35%$ higher isoprene concentrations during daytime and presented better matches to the high peaks observed over the Seoul area. This study showed that the importance of vegetation data and emission factors to estimate biogenic emissions. Thus, it is expected to improve domestic vegetation categories and emission factors in order to better represent biogenic emissions over South Korea.

국내 유연탄의 발열량 추이 분석(2010~2014년) 및 탄소배출계수 개발 (Domestic Bituminous Coal's Calorific Value Trend Analysis (2010~2014) and Carbon Emission Factor Development)

  • 김민욱;조창상;전영재;양진혁;신호철;전의찬
    • 한국기후변화학회지
    • /
    • 제7권4호
    • /
    • pp.513-520
    • /
    • 2016
  • Korea's energy consumption has been constantly increasing. Final energy consumption was increased by an annual average of 2.9% compared to 2010. The consumption of all energy sources except for its oil was increased during the same time. While electric demand has increased coal consumption increased rapidly. Therefore, calorfic value and carbon emission factor development can improve the quality of Korea's greenhouse gas inventory. Calorific value is the amount of heat generated while burning coal. Caloric value is one of the most important factors in the development of carbon emission factors. Calorific value is used as the basis for the analysis of the various energy statistics. This study has calculated the other bituminous coal and coking coal's calorfic value by the data received from domestic coal-fired power plants and steel manufacturer. Calorofic value's trend analysis period is the year of 2010~2014. Through analyzing the carbon content it was calculated the carbon emission factor. The bituminous coal and coking coal's uncertainty analysis was performed using a Monte Carlo simulation.

국내 아역청탄의 발열량 추이 분석과 탄소배출계수 개발 (Sub-bituminous Coal's Calorific Value Trend Analysis and Carbon Emission Factor Development)

  • 김민욱;조창상;전영재;양진혁;신호철;전의찬
    • 한국기후변화학회지
    • /
    • 제8권2호
    • /
    • pp.145-151
    • /
    • 2017
  • Korea's energy consumption has been constantly increasing. Final energy consumption was increased by anannual average of 2.9% compared to 2010. The consumption of all energy sources except for its oil was increased during the same time. While electric demand has increased coal consumption increased rapidly. Therefore, calorfic value and carbon emission factor development can improve the quality of Korea's greenhouse gas inventory. Calorific value is the amount of heat generated while burning coal. Caloric value is one of the most important factors in the development of carbon emission factors. Calorific value is used as the basis for the analysis of the various energy statistics. This study has calculated the sub-bituminous coal's calorfic value by the data received from domestic coal-fired power plants. Calorofic value's trend analysis period is the year of 2011~2015. Through analyzing the carbon content it was calculated the carbon emission factor. The sub-bituminous coal's uncertainty analysis was performed using a Monte Carlo simulation.

한반도 지역에서 CO2 배출량과 OCO-2 XCO2 및 SIF의 관계성 분석 (Analysis of the Relationship between CO2 Emissions, OCO-2 XCO2 and SIF in the Korean Peninsula)

  • 황예지;김재민;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.169-181
    • /
    • 2023
  • 최근 지구온난화의 주원인인 이산화탄소(carbon dioxide, CO2)의 배출량을 줄이기 위하여 한국은 탄소 배출량 감축목표와 탄소 중립을 선언하였으며, 이에 따른 지역별 배출량과 대기 중 CO2 농도의 정확한 평가가 중요해지고 있다. 본 연구에서는 Orbiting Carbon Observatory-2 위성자료와 CO2 배출량 자료를 활용하여 위성기반 대기 중 CO2 농도와 배출량의 시공간적 차이를 확인하고, 이러한 차이를 식생 성장에 따른 광합성 반응지수인 태양유도 엽록소 형광(solar-induced fluorescence, SIF)을 이용하여 설명하고자 하였다. 2014년부터 2018년까지 한국 지역에서 환경부 온실가스종합정보센터(Greenhouse Gas Inventory and Research Center, GIR) 및 Emissions Database for Global Atmospheric Research (EDGAR) 배출량은 지속적으로 증가하였지만, 위성에서 관측된 CO2 농도는 2018년에 전년 대비 감소하는 것으로 나타났다. 지역적으로 살펴보면 경기도, 충청북도는 2018년에 GIR, EDGAR 배출량이 증가하였지만 CO2 농도는 감소하였다. 또한, 배출량과 위성관측 CO2 농도의 상관성분석에서 서울과 강원도 지역에서 각각 0.22 (GIR), 0.16 (EDGAR)으로 낮은 상관성을 보였다. 대기 중 CO2 농도는 SIF와 지역별로 상이한 상관관계를 보였는데, 5~9월의 CO2-SIF 상관성분석에서 서울과 경기지역은 -0.26의 음의 상관계수를, 충청북도와 강원도는 0.46의 양의 상관계수를 보이며 CO2 흡수와 대기 중 농도의 관계성이 지역별로 차이가 있음을 밝혔다. 따라서 대기 중 CO2 농도와 배출량 사이의 관계성을 분석함에 있어 CO2 흡수 과정에 대한 고려가 필요하다는 것을 시사한다.

국가 온실가스 감축목표 달성을 위한 지자체 온실가스 배출특성 연구 (A Study on Greenhouse Gas Emissions Characteristics of Local Government for the Achievement of the National Reduction Goal)

  • 박지희;김형석;송건범;이승주
    • 한국기후변화학회지
    • /
    • 제8권3호
    • /
    • pp.247-255
    • /
    • 2017
  • In this study, GHG inventory on 17 local government between 2005 and 2014 is build up using 'GHG emission estimation guideline (2016. 2) for local government' developed and distributed by KECO. This covers all the sectors should be included in national GHG inventory, which are energy, industrial process, agriculture, AFOLU, and waste. In addition, six GHGs, carbon dioxide, metane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride declared in Kyoto protocol are estimated to reflect utmost precision. Indirect esissions, such as electricity, heat and waste generation are separately estimated as well as direct emissions to help local government to establish substantial and implementable reduction measures of GHGs.

수도권 초미세먼지 농도모사: ( I ) 2013 CAPSS 배출량 목록의 전구물질별 기여도 추정 (PM2.5 Simulations for the Seoul Metropolitan Area: ( I ) Contributions of Precursor Emissions in the 2013 CAPSS Emissions Inventory)

  • 김순태;배창한;김병욱;김현철
    • 한국대기환경학회지
    • /
    • 제33권2호
    • /
    • pp.139-158
    • /
    • 2017
  • CMAQ (Community Multiscale Air Quality Model) simulations were carried out to estimate the potential range of contributions on surface $PM_{2.5}$ concentrations over the Seoul Metropolitan Area (SMA) with the gaseous precursors and Primary Particulate Matters(PPM) available from a recent national emissions inventory. In detail, on top of a base simulation utilizing the 2013 Clean Air Policy Supporting System (CAPSS) emission inventory, a set of Brute Force Method (BFM) simulations after reducing anthropogenic $NO_x$, $SO_2$, $NH_3$, VOCs, and PPM emissions released from area, mobile, and point sources in SMA by 50% were performed in turn. Modeling results show that zero-out contributions(ZOC) of $NH_3$ and PPM emissions from SMA are as high as $4{\sim}5{\mu}g/m^3$ over the region during the modeling period. On the contrary, ZOC of local $NO_x$ and $SO_2$ emissions to SMA $PM_{2.5}$ are less than $1{\mu}g/m^3$. Moreover, model analyses indicate that a wintertime $NO_x$ reduction at least up to 50% increases SMA $PM_{2.5}$ concentrations, probably due to increased HNO3 formation and conversion to aerosols under more abundant ozone and radical conditions after the $NO_x$ reduction. However, a nation-wide $NO_x$ reduction decreased SMA $PM_{2.5}$ concentrations even during winter, which implies that nation-wide reductions would be more effective to curtail SMA $PM_{2.5}$ concentrations than localized efforts.