• Title/Summary/Keyword: Emission facilities classification system

Search Result 3, Processing Time 0.018 seconds

Determination of the Best Available Techniques Associated Emission Level(BAT-AEL) (최적가용기법 연계배출수준(BAT-AEL) 설정)

  • Seo, Kyungae;Bae, Yeon Joung;Park, Jae Hong;Shin, Dong Seok;Rhew, Doug Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.4
    • /
    • pp.455-464
    • /
    • 2019
  • BAT-AEL(Best Available Techniques Associate Emission Level) is the basis for establishing permissible emission standards for the workplace. Therefore, it is necessary to formulate a regulated BAT-AEL setting methodology that is generally applicable to all relevant industries. For the BAT-AEL settings, various factors should be considered such as the pollutants item, whether the workplace is subject to integrated pollution prevention and control, whether BAT is applicable, the basic data type, the emission classification system, and the suitability of the collected data. Among these factors, it is the most important factor to establish the classification system for the emitting facilities such that the emission characteristics of an industrial facility and its pollutants can be effectively reflected. Furthermore the target of the survey workplace should adhere to the BAT guidelines, even if it is a workplace that is subject to an the integrated environmental system. Certified data (SEMS, TMS, cleanSYS, WEMS, etc.) can be used to prioritize the classification system for the emission facility and the emission levels of pollutants. However, the self-measured data, daily logs, and questionnaire data from the workplace can also be used upon agreement of the relevant TWG. The collected data should only be used only when the facility is operating normally. Data that have been determined to be outliers or inappropriate validation methods should also be excluded. The BAT-AEL can be establish by adhering to the following procedure: 1) investigate all relevant workplaces with in the industry, 2)select workplaces for integrated management, 3)Identify BAT application, 4)identify whether BAT is generally applicable, 5)establish a classification system for emitting facilities, 6)collection available data, 7)verify conformity, 8)remove of outliers, 9)prepare the BAT-AEL draft, 10)deliberate, and 11) perform the confirmation procedure.

Distribution Characteristics of Ambient Heavy Metals based on the Emission Sources and their Carcinogenic Risk Assessment in Ulsan, Korea (발생원에 근거한 울산지역의 대기중금속 분포특성 및 발암위해성 평가)

  • Choi, Bong-Wook;Jung, Jong-Hyeon;Choi, Won-Joon;Jeon, Chang-Jae;Shon, Byung-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.522-531
    • /
    • 2006
  • This study has been conducted to evaluate the influence of ambient heavy metals to the air quality and to find their sources in Ulsan. Korea. The distribution characteristics of ambient heavy metals with wind direction were investigated by using pollution-rose diagram. Carcinogenic risk for five trace heavy metals (Pb. Cd, Cr, Mn, and Ni), which are classified to carcinogenic material by US EPA, are assessed according to the classification system of USEPA and WHO. According to pollution-rose calculation on pollutants sources, Pb and Cu in Deoksin, which is an adjacent to Onsan industrial complexes, were $0.1058\;and\;0.3242{\mu}g/m^3$. These concentration levels are the highest at all sampling sites. From this result we could confirm that it was affected by Onsan industrial complex that is located northeast of Deoksin.,And the maximum concentration of Cd, Cr, and Ni were $0.0306,\;0.0102,\;and\;0.0146\;{\mu}g/m^{3} in Yeocheon respectively. Because Yeocheon is in the Mipo industrial complexes, which have many combustors, incinerators, and manufacturing facilities compared to other regions. In carcinogenic risk assessment, Pb, Ni, and Mn concentration level at six sampling sites were lower than the risk level guideline values ($10^{-5}$) of WHO. However, $Cr^{6+}$ and Cd concentration in Yeocheon were 60% and 205% higher than the guideline values of WHO. Therefore it is very important that the emission from industrial complexes were carefully managed and controlled to improve air quality in residential area.

Korea Emissions Inventory Processing Using the US EPA's SMOKE System

  • Kim, Soon-Tae;Moon, Nan-Kyoung;Byun, Dae-Won W.
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.34-46
    • /
    • 2008
  • Emissions inputs for use in air quality modeling of Korea were generated with the emissions inventory data from the National Institute of Environmental Research (NIER), maintained under the Clean Air Policy Support System (CAPSS) database. Source Classification Codes (SCC) in the Korea emissions inventory were adapted to use with the U.S. EPA's Sparse Matrix Operator Kernel Emissions (SMOKE) by finding the best-matching SMOKE default SCCs for the chemical speciation and temporal allocation. A set of 19 surrogate spatial allocation factors for South Korea were developed utilizing the Multi-scale Integrated Modeling System (MIMS) Spatial Allocator and Korean GIS databases. The mobile and area source emissions data, after temporal allocation, show typical sinusoidal diurnal variations with high peaks during daytime, while point source emissions show weak diurnal variations. The model-ready emissions are speciated for the carbon bond version 4 (CB-4) chemical mechanism. Volatile organic carbon (VOC) emissions from painting related industries in area source category significantly contribute to TOL (Toluene) and XYL (Xylene) emissions. ETH (Ethylene) emissions are largely contributed from point industrial incineration facilities and various mobile sources. On the other hand, a large portion of OLE (Olefin) emissions are speciated from mobile sources in addition to those contributed by the polypropylene industry in point source. It was found that FORM (Formaldehyde) is mostly emitted from petroleum industry and heavy duty diesel vehicles. Chemical speciation of PM2.5 emissions shows that PEC (primary fine elemental carbon) and POA (primary fine organic aerosol) are the most abundant species from diesel and gasoline vehicles. To reduce uncertainties in processing the Korea emission inventory due to the mapping of Korean SCCs to those of U.S., it would be practical to develop and use domestic source profiles for the top 10 SCCs for area and point sources and top 5 SCCs for on-road mobile sources when VOC emissions from the sources are more than 90% of the total.