• Title/Summary/Keyword: Emission current

Search Result 1,490, Processing Time 0.032 seconds

Degradation of the Pd catalytic layer electrolyte in dye sensitized solar cells (염료감응태양전지에서 Pd 촉매층의 전해질과의 반응에 따른 특성 저하)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2037-2042
    • /
    • 2013
  • A TCO-less palladium (Pd) catalytic layer on the glass substrate was assessed as the counter electrode (CE) in a dye sensitized solar cell (DSSC) to confirm the stability of Pd with the $I^-/I_3{^-}$electrolyte on the DSSC performance. A 90nm-thick Pd film was deposited by a thermal evaporator. Finally, DSSC devices of $0.45cm^2$ with glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass structure was prepared. We investigated the microstructure and photovoltaic property at 1 and 12 hours after the sample preparation. The optical microscopy, field emission scanning electron microscopy (FESEM), cyclic voltammetry measurement (C-V), and current voltage (I-V) were employed to measure the microstructure and photovoltaic property evolution. Microstructure analysis showed that the corrosion by reaction between the Pd layer and the electrolyte occurred as time went by, which led the decrease of the catalytic activity and the efficiency. I-V result revealed that the energy conversion efficiency after 1 and 12 hours was 0.34% and 0.15%, respectively. Our results implied that we might employ the other non-$I^-/I_3{^-}$electrolyte or the other catalytic metal layers to guarantee the long term stability of the DSSC devices.

The Present Status and Development Plan in the Field of Climate Change Science in Korea analyzed by the IPCC-IV Reports (IPCC-IV 국가 보고서 분석에 의한 한국의 기후변화과학 분야의 현황과 발전방향)

  • Chung, Yun-Ang;Chung, Hyo-Sang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • The recent global warming may be estimated to give lots of impacts to the human society and biosphere of influencing climate change included by the natural climate variations through the human activity which can directly and/or indirectly play a major role of total atmospheric composition overall. Therefore it currently appears evidences such as hot wave, typhoon, and biosphere disturbance, etc. over the several regions to be influenced by global warming due to increasing the concentration of greenhouse gases in the atmosphere through inducing forest destruction, fossil fuel combustion, greenhouse gases emission, etc. since industrial revolution era. Through the working group report of IPCC (Intergovernmental Panel on Climate Change) for climate change was analyzed by the individual country's current status and figure out the important issues and problems related to the future trend of climate change science with advanced countries preparedness and research, In this study, the first working group report of IPCC focuses on those aspects of the current understanding of the physical science of climate change that are judged to be most relevant to policymakers. As this report was assessed and analyzed by including the progress of climate change science, the role of climate models and evolution in the treatment of uncertainties. This consists of the changes in atmospheric constituents(both aerosols and gases) that affect the radiative energy balance in the atmosphere and determine the Earth's climate, considering the interaction between biogeochemical cycles that affect atmospheric constituents and climate change, including aerosol/cloud interactions, the extensive range of observations snow available for the atmosphere and surface, for snow, ice, and frozen ground and for the oceans, respectively and changes in sea level, the paleoclimate perspective and assessment of evidence for past climate change and the extension, the ways in which physical processes are simulated in climate models and the evaluation of models against observed climate, the development plans and methods of improving expert and building manpower urgently and R&D fund expansion in detail for climate change science in Korea will be proposed.

Tracking Propagation Mechanism on the Surface of Polyvinyl-Chloride-Sheathed Flat Cord based on Electric Field Analysis and Gas Discharge Physics (전계해석과 기체방전 이론을 기반으로 한 Polyvinyl-Chloride-Sheathed Flat Cord 표면의 트래킹 진전 메커니즘)

  • Lim, Dong-Young;Park, Herie;Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.30-38
    • /
    • 2019
  • Tracking, which is one of the main causes of electrical fires, is perceived as a physical phenomenon of electrical discharge. Hence tracking should be explained based on electric field analysis, conduction path by electron generation, and gas discharge physics. However, few papers have considered these details. This paper proposes a tracking mechanism including their effects on tracking progress. In order to prove this mechanism, a tracking experiment, an electric field analysis for the carbonization evolution model, and an explanation of the tracking process by gas discharge physics were conducted. From the tracking experiment, the current waveforms were measured at each stage of the tracking progress from corona discharge to tracking breakdown. The electric field analysis was carried out in order to determine the electric field on the surface of a dry-band and the high electric field region for electron generation during the generation and progress of carbonization. In this paper, the proposed tracking mechanism consisted of six stages including electron avalanche by corona discharge, accumulation of positive ions, expansion of electron avalanche, secondary electron emission avalanche, streamer, and tracking by conductive path. The pulse current waveforms measured in the tracking experiment can be explained by the proposed tracking mechanism. The results of this study will be used as the technical data to detect tracking phenomenon, which is the cause of electric fire, and to improve the proof tracking index.

Regional Categorization of Gyeonggi Province for Fine Dust Management (경기도 지역 미세먼지 관리를 위한 권역 범주화 연구)

  • Lee, Su-Min;Lee, Tae-Jung;Oh, Jongmin;Kim, Sang-Cheol;Jo, Young-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.237-246
    • /
    • 2021
  • The similarity of hourly PM10 and PM2.5 concentration profiles of the atmospheric monitoring stations in Gyeonggi-do was evaluated through the multilateral analysis between stations. The existing category for most stations in the regions shows relatively low Pearson correlation values of 0.68 and 0.7 for PM10 and PM2.5 on average respectively, and some monitoring stations revealed high relationships over 0.8 to other regions. Since the current regions are mainly categorized by cluster analysis based on the number of occurrence of high concentration events and geological factors, it is necessary to reclassify them by concentration characteristics for precise fine dust management. In accordance, multi-dimensional scaling being able to visualize could categorize the regions based on regional emission contribution rate and hourly fine dust concentration. As a result of the current analysis, PM10 and PM2.5 could be reclassified into five regions and fourregions, respectively.

Prediction of Chemical Acceleration Durability Time of Polymer Membrane in Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지에서 고분자막의 화학적 가속 내구 시간 예측)

  • Sohyeong Oh;Donggeun Yoo;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • For durability improvement of polymer electrolyte membrane fuel cell (PEMFC) polymer membrane, accelerated durability evaluation methods that can evaluate durability in a short time have been researched and developed. However, the lifespan of fuel cells for large commercial vehicles such as trucks and buses is more than three times that of passenger cars, and the chemical accelerated stress test (AST) time is also longer, reaching 1,500 hours or more. Therefore, in this study, as a method to evaluate the chemical durability of a membrane within a short time, it was examined whether the durability could be predicted by the pristine membrane characteristics. Hydrogen crossover current density (HCCD) and short resistance (SR) were estimated as initial characteristics, and AST time was predicted through the Fenton experiment, which was possible as an out-of-cell experiment for 3 hours. As the HCCD and fluoride ion emission concentration increased, the AST time tended to be linearly shortened, but there was a deviation (R2 ≒0.65). When the SR decreased, the AST time showed a linear increase, and the accuracy was high (R2 =0.93), so the AST time could be predicted with the initial SR of the membrane.

The Evaluation for Attenuation Map using Low Dose in PET/CT System (PET/CT 시스템에서 감쇠지도를 만들기 위한 저선량 CT 평가)

  • Nam, So-Ra;Cho, Hyo-Min;Jung, Ji-Young;Lee, Chang-Lae;Lim, Han-Sang;Park, Hoon-Hee;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.134-138
    • /
    • 2007
  • The current PET/CT system with high quality CT images not only increases diagnostic value by providing anatomic localization, but also shortens the acquisition time for attenuation correction than primary PET system. All commercially available PET/CT system uses the CT scan for attenuation correction instead of the transmission scan using radioactive source such as $^{137}Cs,\;^{68}Ge$. However the CT scan may substantially increase the patient dose. The purpose of this study was to evaluate quality of PET images reconstructed by CT attenuation map using various tube currents. in this study, images were acquired for 3D Hoffman brain phantom and cylindrical phantom using GE DSTe PET/CT system. The emission data were acquired for 10 min using phantoms after injecting 44.03 MBq of $^{18}F-FDG$. The CT images for attenuation map were acquired by changing tube current from 10 mA to 95 mA with fixed exposure time of 8 sec and fixed tube voltage of 140 kVp. The PET images were reconstructed using these CT attenuation maps. Image quality of CT images was evaluated by measuring SD (standard deviation) of cylindrical phantom which was filled with water and $^{18}F-FDG$ solution. The PET images were evaluated by measuring the activity ratio between gray matter and white matter in Hoffman phantom images. SDs of CT images decrease by increasing tube current. When PET images were reconstructed using CT attenuation maps with various tube currents, the activity ratios between gray matter and white matter of PET images were almost same. These results indicated that the quality of the PET images using low dose CT data were comparable to the PET images using general dose CT data. Therefore, the use of low dose CT is recommended than the use of general dose CT, when the diagnostic high quality CT is not required. Further studies may need to be performed for other system, since this study is limited to the GE DSTe system used in this study.

  • PDF

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Current Status and Future Perspective of PET (PET 이용 현황 및 전망)

  • Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Positron Emission Tomography (PET) is a nuclear medicine imaging modality that consists of systemic administration to a subject of a radiopharmaceutical labeled with a positron-emitting radionuclide. Following administration, its distribution in the organ or structure under study can be assessed as a function of time and space by (1) defecting the annihilation radiation resulting from the interaction of the positrons with matter, and (2) reconstructing the distribution of the radioactivity from a series of that used in computed tomography (CT). The nuclides most generally exhibit chemical properties that render them particularly desirable in physiological studies. The radionuclides most widely used in PET are F-18, C-11, O-15 and N-13. Regarding to the number of the current PET Centers worldwide (based on ICP data), more than 300 PET Centers were in operation in 2000. The use of PET technology grew rapidly compared to that in 1992 and 1996, particularly in the USA, which demonstrates a three-fold rise in PET installations. In 2001, 194 PET Centers were operating in the USA. In 1994, two clinical and research-oriented PET Centers at Seoul National University Hospital and Samsung Medical Center, was established as the first dedicated PET and Cyclotron machines in Korea, followed by two more PET facilities at the Korea Cancer Center Hospital, Ajou Medical Center, Yonsei University Medical Center, National Cancer Center and established their PET Center. Catholic Medical School and Pusan National University Hospital have finalized a plan to install PET machine in 2002, which results in total of nine PET Centers in Korea. Considering annual trends of PET application in four major PET centers in Korea in Asan Medical Center recent six years (from 1995 to 2000), a total of 11,564 patients have been studied every year and the number of PET studies has shown steep growth year upon year. We had 1,020 PET patients in 1995. This number increased to 1,196, 1,756, 2,379, 3,015 and 4,414 in 1996,1997,1998,1999 and 2000, respectively. The application in cardiac disorders is minimal, and among various neuropsychiatric diseases, patients with epilepsy or dementia can benefit from PET studios. Recently, we investigated brain mapping and neuroreceptor works. PET is not a key application for evaluation of the cardiac patients in Korea because of the relatively low incidence of cardiac disease and less costly procedures such as SPECT can now be performed. The changes in the application of PET studios indicate that, initially, brain PET occupied almost 60% in 1995, followed by a gradual decrease in brain application. However, overall PET use in the diagnosis and management of patients with cancer was up to 63% in 2000. The current medicare coverage policy in the USA is very important because reimbursement policy is critical for the promotion of PET. In May 1995, the Health Care Financing Administration (HCFA) began covering the PET perfusion study using Rubidium-82, evaluation of a solitary pulmonary nodule and pathologically proven non-small cell lung cancer. As of July 1999, Medicare's coverage policy expanded to include additional indications: evaluation of recurrent colorectal cancer with a rising CEA level, staging of lymphoma and detection of recurrent or metastatic melanoma. In December of 2001, National Coverage decided to expand Medicare reimbursement for broad use in 6 cancers: lung, colorecctal, lymphoma, melanoma, head and neck, and esophageal cancers; for determining revascularization in heart diseases; and for identifying epilepsy patients. In addition, PET coverage is expected to further expand to diseases affecting women, such as breast, ovarian, uterine and vaginal cancers as well as diseases like prostate cancer and Alzheimer's disease.

Current Status of Sericulture and Insect Industry to Respond to Human Survival Crisis (인류의 생존 위기 대응을 위한 양잠과 곤충 산업의 현황)

  • A-Young, Kim;Kee-Young, Kim;Hee Jung, Choi;Hyun Woo, Park;Young Ho, Koh
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.605-614
    • /
    • 2022
  • Two major problems currently threaten human survival on Earth: climate change and the rapid aging of the population in developed countries. Climate change is a result of the increase in greenhouse gas (GHG) concentrations in the atmosphere due to the increase in the use of fossil fuels owing to economic and transportation development. The rapid increase in the age of the population is a result of the rise in life expectancy due to the development of biomedical science and technology and the improvement of personal hygiene in developed countries. To avoid irreversible global climate change, it is necessary to quickly transition from the current fossil fuel-based economy to a zero-carbon renewable energy-based economy that does not emit GHGs. To achieve this goal, the dairy and livestock industry, which generates the most GHGs in the agricultural sector, must transition to using low-carbon emission production methods while simultaneously increasing consumers' preference for low-carbon diets. Although 77% of currently available arable land globally is used to produce livestock feed, only 37% and 18% of the proteins and calories that humans consume come from dairy and livestock farming and industry. Therefore, using edible insects as a protein source represents a good alternative, as it generates less GHG and reduces water consumption and breeding space while ensuring a higher feed conversion rate than that of livestock. Additionally, utilizing the functionality of medicinal insects, such as silkworms, which have been proven to have certain health enhancement effects, it is possible to develop functional foods that can prevent or delay the onset of currently incurable degenerative diseases that occur more frequently in the elderly. Insects are among the first animals to have appeared on Earth, and regardless of whether humans survive, they will continue to adapt, evolve, and thrive. Therefore, the use of various edible and medicinal insects, including silkworms, in industry will provide an important foundation for human survival and prosperity on Earth in the near future by resolving the current two major problems.

Climate Change Impact on Korean Forest and Forest Management Strategies (기후변화가 한국 산림에 미치는 영향과 관리 전략)

  • Kim, Moonil;Yoo, Somin;Kim, Nahui;Lee, Wona;Ham, Boyoung;Song, Cholho;Lee, Woo-Kyun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.413-425
    • /
    • 2017
  • This manuscript describes the relationship between climate change and forest growth, forest species, carbon stocks, and tree mortality. 1) In the aspect of forest growth, the growth of major coniferous species, including Pinus densiflora, had a negative correlation with temperature. On the other hand, major deciduous oak species, including Quercus variabilis and Quercus mongolica, had a positive correlation with temperature. 2) When considered in the aspect of the forest species distribution, various models commonly showed a decrease in the distribution of coniferous species and an increase in oak species due to climate change in the medium to long term. 3) From the carbon stock perspective, there was a difference in the estimation according to the status of forest management. Most of Korean forests will mature to become over-matured forest after year 2030 and are estimated to produce approximately 410 million ton forest biomass until 2090 with the current cutting regulations for sustainable forest management announced by the Korean Forest Service. 4) In the forest mortality, the mortality rate of the major coniferous species showed a clear tendency to increase higher temperatures while it decreased for the oak species with no verification of statistical significance. Moreover, the mortality of the subalpine coniferous species was projected to progress rapidly. considering the overall impacts described above, there should be a management strategy for coniferous species that are relatively vulnerable to climate change. Moreover, a sustainable forest plan in the aspect of ecosystem services, carbon sequestration and storage, which is linked to global issues such as Sustainable Development Goals, ecosystem services and negative emission.