• Title/Summary/Keyword: Emission Trading Scheme

Search Result 60, Processing Time 0.023 seconds

Economic impacts of linking carbon markets among Korea, China and Japan (한중일 탄소시장 연계의 파급효과 분석)

  • Kim, Yong Gun
    • Environmental and Resource Economics Review
    • /
    • v.21 no.4
    • /
    • pp.809-850
    • /
    • 2012
  • A linkage of emissions trading schemes among Korea, China and Japan demonstrates overall increase in gross domestic product (GDP). However, it also demonstrates reductions in household consumption, and the impact of integration could be very unbalanced between the countries. In particular, the reductions in domestic marginal costs are high in both Korea and Japan. Therefore, household consumptions in the two countries decrease despite increases in GDP because Korea and Japan will be purchasers of emissions rights. China, on the other hand, will experience the opposite. The unbalanced impacts on real household consumptions are intensified when emission credits are allocated via paid auctions instead of free allocation. This was demonstrated to be the case because the circumstances of three countries are intensified when using a paid emissions credit allocation scheme, and their differences could potentially hinder the cooperation between the three countries. Under the free allocation scheme, the emission trading schemes' unbalanced impacts on consumption could be mitigated, but unavoidable negative impacts of free allocation schemes are also serious. Based on the analysis results, Korea, China, and Japan will individually face complicated impacts if their carbon markets are integrated. Although the GDP of three countries will increase as a result of carbon market integration, the benefits of integration will surely be unbalanced, and the three countries will experience negative impacts in terms of actual consumption or employment. In particular, increases in income and consumption, reductions in employment, and energy dependence by credit purchasers (Japan and Korea) and production reduction and possibility of offshoring faced by revenue producing countries (China) could serve as a barrier to carbon market integration. To maximize the positive influences of carbon market integration while reducing the risks of negative side effects, the development and application of complimentary policy tools, such as import duties or discounts for emissions credits, are required.

  • PDF

An Empirical Study on Price discovery between Emission Spot and Futures Markets in EU ETS Emission Markets (EU ETS 탄소시장에서 EUA 선물의 가격발견에 관한 연구)

  • Kim, Soo-Kyung
    • Management & Information Systems Review
    • /
    • v.33 no.3
    • /
    • pp.93-104
    • /
    • 2014
  • This study investigates price discovery between BlueNext spot and futures in EU ETS carbon emission markets using vector error correction model, GG and Hasbruck information ratio. Especially EUA is European Union Allowances traded on the Emissions Trading Scheme. This emission asset attracts and increasing attention among operators, investors and brokers on emission markets. In this study, we found BlueNext spot and EUA futures market are cointegrated. Following the preceding studies, we judged that EUA futures market contribute to the price discovery process than BlueNext spot market when this GG and Hasbrouck information ratio for BlueNext market are larger than 0.5. In other words, the futures market of EUA plays a more dominant role in price discovery than the spot market.

  • PDF

Influence of $CO_2$ constraints to airlines by EU-ETS on passenger behavior (EU-ETS로 인한 항공사의 탄소비용증가가 항공여객에게 미치는 영향)

  • Kim, Baek-Jae;Yoo, Kwang-Eui;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.61-68
    • /
    • 2011
  • 유럽연합(EU)은 2012년부터 항공산업에 대해 탄소배출권 거래제도를 적용할 예정이다. 따라서 유럽공항에서 출발 및 도착하는 모든 국제선과 국내선 항공편에 대해 탄소세가 부과될 것이며 이는 한국도 예외는 아니다. 또한 유럽을 운항하는 경우 장거리에 해당되어 중단거리를 운항하는 항공기들에 비해 총 탄소배출량이 더 많으므로 비용부담이 커질 것으로 예상된다. 본 연구는 EU-ETS로 인한 탄소세가 항공요금에 반영된다면 항공여객들이 어느 정도 민감하게 반응할 것이며 이러한 점들이 궁극적으로 한국의 항공시장에 어떤 영향을 미칠 것인지를 파악해 보는데 목적이 있다. 이를 위해 인천국제공항에서 프랑크푸르트 국제공항 노선을 이용하는 승객을 대상으로 직항노선과 중동지역 경유노선을 비교하여 EU-ETS 가격이 반영된 항공요금에 대한 반응을 Revealed Preference (RP)와 Stated Preference (SP) 설문자료와 Logit Model을 사용하여 분석하였다. 본 연구결과는 한국의 항공산업은 물론 2012년부터 부과될 EU-ETS에 대한 항공사들의 전략개발에 도움이 될 것이다.

Environment R&D Incentives with Emission Banking and Borrowing in a Cournot Model (쿠르노 경쟁하의 배출권 이월 및 차입과 감축기술개발투자)

  • Jeong, Kyonghwa;Shim, Sunghee
    • Journal of Environmental Policy
    • /
    • v.14 no.4
    • /
    • pp.63-101
    • /
    • 2015
  • Banking and borrowing under the ETS may affect the low carbon technology investment level. If the indirect implementation measures are allowed, firms can gradually adjust their carbon reduction costs between implementation periods based on their carbon reduction costs and emission price forecasts. This implies that banking and borrowing may reduce or increase the level of low carbon technology R&D investment. In an oligopoly market, the effects of the measures are quite different from the ones in a perfectly competitive market. This is because the indirect implementation measures can shift market competition in Cournot competition model. The effects of banking and borrowing on the carbon reduction R&D investments depend on emission reduction costs, marginal production costs, discount rate, initial free allocation, and the cost reduction effects of R&D investment.

  • PDF

A Study of Policy Change on K-ETS and its Objective Conformity (한국 배출권거래제 정책 변동의 목적 부합성 연구)

  • Oh, Il-Young;Yoon, Young Chai
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.325-342
    • /
    • 2018
  • The Korea Emissions Trading Scheme ( K-ETS), which manages roughly 70% of the greenhouse gas emissions in South Korea, was initiated in 2015, after implementation of its 1st basic plan and the 1st allocation plan (2014) for the 1st phase (2015-2017). During the three and a half years since the launch of K-ETS, there have been critical policy change such as adjustment of the institutions involved, development and revision of the 2030 national GHG reduction roadmap, and change in the allocation plans. Moreover, lack of liquidity and fluctuation of carbon prices in the K-ETS market during this period has forced the Korean government to adjust the flexibility mechanism and auction permits of the market stability reserve. To evaluate the policy change in the K-ETS regarding conformance to its objectives, this study defines three objectives (Environmental Effectiveness, Cost Effectiveness and Economic Efficiency) and ten indicators. Evaluation of Environmental Effectiveness of K-ETS suggests that the national GHG reduction roadmap, coverage of GHG emitters and credibility of MRV positively affect GHG mitigation. However, there was a negative policy change implemented in 2017 that weakened the emission cap during the 1st phase. In terms of the Cost Effectiveness, the K-ETS policies related to market management and flexibility mechanism (e.g. banking, borrowing and offsets) were improved to deal with the liquidity shortage and permit price increase, which were caused by policy uncertainty and conservative behavior of firms during 2016-2018. Regarding Economic Efficiency, K-ETS expands benchmark?based allocation and began auction-based allocation; nevertheless, free allocation is being applied to sectors with high carbon leakage risk during the 2nd phase (2018-2020). As a result, it is worth evaluating the K-ETS policies that have been developed with respect to the three main objectives of ETS, considering the trial?and?error approach that has been followed since 2015. This study suggests that K-ETS policy should be modified to strengthen the emission cap, stabilize the market, expand auction-based allocation and build K-ETS specified funds during the 3rd phase (2021-2025).

A study on the approach to reduce in the aviation GHG emissions in Korea (항공온실가스 배출현황 및 감축규제 대응방안)

  • Lee, Juhyoung;kim, Wonho;Kim, Yongseok;Choi, Sungwon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • Global aviation is projected to grow in demand by an annual average of 4.1% between 2014 and 2034. It can be said that environmental impact from aviation will therefore be expected to increase on a similar scale. As regards civil aviation emissions, the sector contributes between 2~3% to International aviation GHG emissions. In the European Union(EU), aviation emissions account for about 3% of the EU's total green house gas emissions, of which a majority are said to come from international flights. In terms of traffic volume in 2013, Korea's international aviation industry 11th with regard to passengers and 3rd with regard to cargo, attaining the overall rank of 5th in the world. GHG emissions has been increasing steadily over the last 4 years, averaging 3.9 percent a year, due to the growth of low cost carriers and the increased demand for air transportations. As for aviation in Korea, there are a number of means intended to attain the Government's emission control objective in an efficient manner, such as AVA (Agreement of Voluntary Activity), TMS (Target Management System) and ETS (Emission Trading Scheme). In addition, the Government intends to better adapt to ICAO's Global MBM(Market-based Measures) that will come into performance on Year 2020. In the study, we focused on GHG mitigation measures that is fulfilling the AVA, TMS, ETS in the Government and suggest the effective measures to reduction the aviation GHG emissions.

Decomposition Analysis of Energy Consumption and GHG Emissions by Industry Classification for Korea's GHG Reduction Targets (감축목표 업종 분류체계에 따른 산업부문의 에너지 소비 및 온실가스 배출 요인 분해 분석)

  • Park, Nyun-Bae;Shim, SungHee
    • Environmental and Resource Economics Review
    • /
    • v.24 no.1
    • /
    • pp.189-224
    • /
    • 2015
  • To meet sectoral emission target by 2020 and prepare for the emission trading scheme from 2015, decomposition analysis of energy consumption and GHG emission is required by 18 subsectors in industry sector where emission targets are established. Log Mean Divisia Index decomposition method was used to analyze factors' effects on energy and emission in the industry sector and by 18 subsectors from 2004 to 2011. Industrial energy consumption was increased due to the production effect and energy intensity effect. However structure effect contributes to the decrease of energy consumption. In terms of emissions (including indirect emission due to electricity consumption) in the industry sector, only structure effect contributed to the emission reduction. Factors' effects by subsectors were different. Cement industry, which is included at Nonmetal shows different results from those of Nonmetal industry and machinery industry, which is a subsector of Fabricated Metal, was also similar. In this regard, we should not apply the policy implications from decomposition analysis of aggregated industry such as Nonmetal or Fabricated Metal to its subsectors uniformly and develop a differentiated policy for each subsector industry.

Legal Review on the Regulatory Measures of the European Union on Aircraft Emission (구주연합의 항공기 배출 규제 조치의 국제법적 고찰)

  • Park, Won-Hwa
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.25 no.1
    • /
    • pp.3-26
    • /
    • 2010
  • The European Union(EU) has recently introduced its Directive 2008/101/EC to include aviation in the EU ETS(emissions trading system). As an amendment to Directive 2003/87/EC that regulates reduction of the green house gas(GHG) emissions in Europe in preparation for the Kyoto Protocol, 1997, it obliges both EU and non-EU airline operators to reduce the emission of the carbon dioxide(CO2) significantly in the year 2012 and thereafter from the level they made in 2004 to 2006. Emission allowances allowed free of charge for each airline operator is 97% in the first year 2012 and 95% from 2013 and thereafter from the average annual emissions during historical years 2004 to 2006. Taking into account the rapid growth of air traffic, i.e. 5% in recent years, airlines operating to EU have to reduce their emissions by about 30% in order to meet the requirements of the EU Directive, if not buy the emissions right in the emissions trading market. However, buying quantity is limited to 15% in the year 2012 subject to possible increase from the year 2013. Apart from the hard burden of the airline operators, in particular of those from non-European countries, which is not concern of this paper, the EU Directive has certain legal problems. First, while the Kyoto Protocol of universal application is binding on the Annex I countries of the Climate Change Convention, i.e. developed countries including all Member States of the European Union to reduce GHG at least by 5% in the implementation period from 2008 to 2012 over the 1990 level, non-Annex I countries which are not bound by the Kyoto Protocol see their airlines subjected to aircraft emissions reductions scheme of EU when operating to EU. This is against the provisions of the Kyoto Protocol dealing with the emissions of GHG including CO2, target of the EU Directive. While the Kyoto Protocol mandates ICAO to set up a worldwide scheme for aircraft emissions to contribute to stabilizing GHG concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system, the EU ETS was drawn up outside the framework of the international Civil Aviation Organization(ICAO). Second, EU Directive 2008/101 defines 'aviation activities' as covering 'flights which depart from or arrive in the territory of a Member State to which the [EU] Treaty applies'. While the EU airlines are certainly subject to the EU regulations, obliging non-EU airlines to reduce their emissions even if the emissions are produced during the flight over the high seas and the airspace of the third countries is problematic. The point is whether the EU Directive can be legally applied to extra-territorial behavior of non-EU entities. Third, the EU Directive prescribes 2012 as the first year for implementation. However, the year 2012 is the last year of implementation of the Kyoto Protocol for Annex I countries including members of EU to reduce GHG including the emissions of CO2 coming out from domestic airlines operation. Consequently, EU airlines were already on the reduction scheme of CO2 emissions as long as their domestic operations are concerned from 2008 until the year 2012. But with the implementation of Directive 2008/101 from 2012 for all the airlines, regardless of the status of the country Annex I or not where they are registered, the EU airlines are no longer at the disadvantage compared with the airlines of non-Annex I countries. This unexpected premium for the EU airlines may result in a derogation of the Kyoto Protocol at least for the year 2012. Lastly, as a conclusion, the author shed light briefly on how the Korean aviation authorities are dealing with the EU restrictive measures.

  • PDF

A Study on the Application of Offset Project for GHG Emission Reduction in Refrigerant Sector - CDM, California Compliance Offset Program - (냉매부문 온실가스 감축을 위한 외부감축사업 활용에 관한 조사 연구 - CDM, 캘리포니아 상쇄제도를 중심으로 -)

  • Park, Yeon-Hwa;In, Eun-Jeong;Kim, Hong-Rok
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.283-288
    • /
    • 2016
  • In this study, applicability of GHG ETS Offset Program in Korea for a refrigerant sector was analyzed by reviewing foreign management policy and project status in progress related to refrigerants in the disposal stage. In order to derive the implication of the domestic Offset Program, it was looked into approved offset projects and certified offset credits current state in Korea. Offset Program has approved 22 methodologies up to the present, so it is necessary to enhance the accessibility to GHG reduction in various industrial sector including the refrigerant sector by developing appropriate methodologies. In this study firstly, it was investigated that management regulation of countries are managing the refrigerants in the disposal stage such as United States, Japan, Australia. Secondly, of CDM methodologies there were two methodologies associated with the refrigerant reduction(treatment), which were decomposition HFC-23 and destruction of HFC-134a. Also there were a non-registered methodology about destruction of HFC-134a of end of life vehicles. Lastly, in California according to Compliance Offset Program, there was Compliance Offset Protocol in ODS Projects that provided eligible conditions. Based on the review, it was examined the possible conditions for domestic offset project for refrigerant sector

Development of a Model and Methodology for the Analysis of the $CO_2$ Emissions Reduction Effect through the Introduction of the G2B Systems in e-government : ECRE Approach (전자정부 G2B 시스템 도입에 따른 탄소저감효과 분석을 위한 모델 및 방법론 개발)

  • Lim, Gyoo-Gun;Lee, Dae-Chul;Lim, Mi-Hwa;Moon, Jong-In
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.3
    • /
    • pp.163-181
    • /
    • 2010
  • As a part of efforts to reduce the global emissions of greenhouse gases, the Kyoto Protocol was signed by major developed countries ("Annex I" countries). According to the Kyoto protocol, the Emission Trading Scheme that derives a trading market of the $CO_2$ emission rights is appeared. It causes that business institutions give lots of efforts to reduce $CO_2$ by using new environmentally sound technologies or increasing efficiency in production. On the while there have been several studies trying to develop a methodology to measure the effect of $CO_2$ reduction and its monetary value. In this research we suggest ECRE (Evaluation of $CO_2$ Reduction in E-transformation) model which can measure the $CO_2$ reduction effect through the introduction of G2B system. ECRC model was developed based on the IPCC methodology. ECRC model measures the two major effects of the $CO_2$ reduction which are '$CO_2$ reduction effect from transportation' and '$CO_2$ reduction effect from the decrease of paper use'. In this paper, we calculate the economic effect of $CO_2$ reduction with the case of the G2B system in Korea. This research suggests a basic methodology to measure the $CO_2$ reduction performance for the e-transformed institution.