• Title/Summary/Keyword: Emission Control Area

Search Result 172, Processing Time 0.022 seconds

A Study on the Method of Air Quality Management Using TCM Model in Industrial Area (군산공업지역의 TCM모형을 적용한 대기오염물질 관리방안에 관한 연구)

  • 김영식;김석재;김동술
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.2
    • /
    • pp.1-10
    • /
    • 1990
  • This study was performed to evaluate a applicability of TCM(Texas Climatological Model) model to a industrial area sush as CUNSAN and a possibility to provide necessary informaitons for air quality management. The air pollutants were measured at 6 sampling sites of GUNSAN industrial area from june to july in 1989. The model was checked by comparing the observed data with estimated data. The meteorological data for wind direction and wind speed were obtained from the observatory station in GUNSAN. The results are summarized as follows. 1. Average concentrations of air pollutants at all sampling sites were SO$_{2}$ 0.011-0.019 ppm. NO$_{2}$ 0.012-0.017 ppm. CO 0.6-1.0 ppm. TSP 45.8-64.2 $\mu$g/m$^{3}$. 2. The emission amounts show that point source are in general higher than area source. 3. As a results of correlation analysis, relationship between SO$_{2}$ concentration in the observed value and estimated value showed positive significance.(r = 0.766) 4. The sulfer content of the 1.6% at present to 0.8%, which means a 53.3% reduction. By controlling stack height could be lowered 14.5%, but the effective way of emission control is use of the lower sulfer fuels than controlling stack height. 5. The ratio between SO$_{2}$ contration in the observed value and estimated value showed 1.05. There-fore, the TCM model was quite effective in predicting air quality in GUNSAN industrial area.

  • PDF

A Study on the Emission Characteristics of Korean Light-duty Vehicles in Real-road Driving Conditions (국내 소형자동차의 실제 도로 주행 배출가스 특성에 관한 연구)

  • Park, Junhong;Lee, Jongtae;Kim, Sunmoon;Kim, Jeongsoo;Ahn, Keunwhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.123-134
    • /
    • 2013
  • Strengthening vehicle emission regulation is one of important policies to improve air quality in urban area. Due to the limitation of specified driving cycles for certification test to reflect real driving conditions, additional off-cycle emission regulations have been adopted in US and being developed in Europe. The driving cycles of US or Europe have been used in emission certification for Korean light-duty vehicles, but it has not been known how well the driving cycles reflect various real driving patterns in Korea. In that point of view, it is required to estimate vehicle emission based on real road driving conditions to raise the effectiveness of vehicle emission regulation in Korea. In this study, real driving emission measurements have been conducted for three Korean light-duty vehicles with PEMS. The driving routes consisted of urban, rural and motorway in Seoul and Incheon. The data have been analyzed with various averaging methods including moving averaging windows method and compared to emission limits set with emission certification modes applied to tested vehicles. The results have shown that the real driving pollutant emissions of a gasoline and a LPG vehicles have been ranged quite lower than those of emission limits on CVS-75 driving cycle. But real driving NOx of a light duty diesel vehicle has been considerably higher than emission limit of NEDC driving cycle. The higher than expected NOx emission of a diesel vehicle might be caused by different strategy to control EGR in real driving condition from NEDC driving.

A Regional Source-Receptor Analysis for Air Pollutants in Seoul Metropolitan Area (수도권지역에서의 권역간 대기오염물질 상호영향 연구)

  • Lee, Yong-Mi;Hong, Sung-Chul;Yoo, Chul;Kim, Jeong-Soo;Hong, Ji-Hyung;Park, Il-Su
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.591-605
    • /
    • 2010
  • This study were to simulate major criteria air pollutants and estimate regional source-receptor relationship using air quality prediction model (TAPM ; The Air Pollution Model) in the Seoul Metropolitan area. Source-receptor relationship was estimated by contribution of each region to other regions and region itself through dividing the Seoul metropolitan area into five regions. According to administrative boundary, region I and region II were Seoul and Incheon in order. Gyeonggi was divided into three regions by directions like southern(region III), northern(IV) and eastern(V) area. Gridded emissions ($1km{\times}1km$) by Clean Air Pollicy Support System (CAPSS) of National Institute of Environmental Research (NIER) was prepared for TAPM simulation. The operational weather prediction system, Regional Data Assimilation and Prediction System (RDAPS) operated by the Korean Meteorology Administration (KMA) was used for the regional weather forecasting with 30km grid resolution. Modeling period was 5 continuous days for each season with non-precipitation. The results showed that region I was the most air-polluted area and it was 3~4 times more polluted region than other regions for $NO_2$, $SO_2$ and PM10. Contributions of $SO_2$ $NO_2$ and PM10 to region I, II and III were more than 50 percent for their own sources. However region IV and V were mostly affected by sources of region I, II and III. When emissions of all regions were assumed to reduce 10 and 20 percent separately, air pollution of each region was reduced linearly and the contributions of reduction scenario were similar to those of base case. As input emissions were reduced according to different ratio - region I 40 percent, region II and III 20 percent, region IV and V 10 percent, air pollutions of region I and III were decreased remarkably. The contributions to region I, II, III were also reduced for their own sources. However, region I, II and III affected more regions IV and V. Shortly, graded reduction of emission could be more effective to control air pollution in emission imbalanced area.

OLED Lighting System Integrated with Optical Monitoring Circuit (광 검출기가 장착된 OLED 조명 시스템)

  • Shin, Dong-Kyun;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.13-17
    • /
    • 2013
  • In lighting system where several large-area organic light-emitting diode (OLED) lighting panels are involved, panel aging may appear differently from each other, resulting in a falling-off in lighting quality. To achieve uniform light output across large-area OLED lighting panels, we have employed an optical feedback circuit. Light output from each OLED panel is monitored by the optical feedback circuit that consists of a photodiode, I-V converter, 10-bit analogdigital converter (ADC), and comparator. A photodiode generates current by detecting OLED light from one side of the glass substrate (i.e., edge emission). Namely, the target luminance from the emission area (bottom emission) of OLED panels is monitored by current generated from the photodiode mounted on a glass edge. To this end, we need to establish a mapping table between the ADC value and the luminance of bottom emission. The reference ADC value corresponds to the target luminance of OLED panels. If the ADC value is lower or higher than the reference one (i.e., when the luminance of OLED panel is lower or higher than its target luminance), a micro controller unit (MCU) adjusts the pulse width modulation (PWM) used for the control of the power supplied to OLED panels in such a way that the ADC value obtained from optical feedback is the same as the reference one. As such, the target luminance of each individual OLED panel is unchanged. With the optical feedback circuit included in the lighting system, we have observed only 2% difference in relative intensity of neighboring OLED panels.

Control of secondary electron emission coefficient with microstructural change of polycrystalline MgO films

  • Yu, Hak-Ki;Lee, Jong-Lam;Park, Eung-Chul;Kim, Jae-Sung;Ryu, Jae-Hwa
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1445-1447
    • /
    • 2008
  • Micro crystal structure of polycrystalline MgO film is controlled by adjusting the energy of particles arrived at the substrate during deposition. The change of crystal structure affects on the total area of (200) surface where the oxygen vacancies are formed easily, resulting in the change of secondary electron emission (SEE) coefficient($\gamma$).

  • PDF

Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines (물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

Analysis of Economic Load Dispatch for the Atmospheric Emission Control in Power Systems (대기환경오염물질의 배출량 제어를 위한 경제부하배분의 해석)

  • 김용하;정민화;송길영
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 1997
  • This paper presents a new economic load dispatch considering atmospheric emissions such as NOx and SO$_2$caused by the operation of fossil-fueled thermal generation in power systems. The proposed method is described for scheduling their output of thermal power units so as to comply with total emission constraint, area emission constraint and the both of those constraints. Also, by using a trade-off curve, representing all dispatch alternatives and conflict between the emission and the fuel cost, the sensitivity analysis of the emission and the fuel cost is applied to this algorithm. By the way, this proposed method is analyzed how dispatch changes as a function of the total environmental cost, and as a function of the relative weighting of individual environmental insults, e.g, NOx and SO$_2$. By applying the proposed method to the system, the usefulness of this method is verified.

  • PDF

Case Analysis on High Concentration of SO2 and Review on Its Reduction Policy in the Ulsan Metropolitan Area since 2001 (울산 지역에서 2001년 이후 이산화황(SO2)의 고농도 사례 분석과 저감 정책 방안의 검토)

  • Moon, Yun-Seob
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.423-437
    • /
    • 2008
  • Until comparatively lately, the annual time series of the $SO_2$ concentration had been shown in a decreasing trend in Ulsan as well as other Korean cities. However, the high concentration of $SO_2$ was frequently found in the specific countermeasure region including the national industrial complex such as Mipo and Onsan in the Ulsan city for the period of $2001{\sim}2004$. There are many conditions that can influence the high concentration of $SO_2$ at monitoring sites in Ulsan, such as: First, annual usage of the fuel including sulfur increased in comparison with the year before in spite of the fuel conversion policy which wants to use low sulfur oil less than 3% and LNG. Second, point source, such as the power plants and the petroleum and chemistry stacks, was the biggest contributor in $SO_2$ emission, as a analyzed result of both the air quality modeling and the stack tole-monitoring system (TMS) data. And third, the air pollutants that occurred in processes of homing and manufacturing of the fuel including sulfur were transported slow into a special monitoring site by accumulating along the frontal area of see-breeze. It was concluded that Ulsan's current environmental policy together with control methods should be changed into the regulation on total amount of emission, including a market-based emission trading with calculating of atmospheric environmental critical loads, for the $SO_2$ reduction like the specific countermeasure for the $O_3$ and PM10 reduction in the Seoul metropolitan area. And this change should be started in the big point sources of $1{\sim}3$ species because they are big contributors of Ulsan's $SO_2$ pollution. Especially it is necessary to revitalize of the self-regulation environmental management. Other control methods for sustaining the $SO_2$ reduction are as follows: maintenance of the fuel conversion policy, reinforcement of the regional stationary source emission standard, and enlargement of the stack TMS.

Microstructure Control and Upconversion Emission Improvement of Y2O3:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Bae, Chaehwan;Jung, Kyeong Youl
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.450-457
    • /
    • 2021
  • Upconversion (UC) properties of Y2O3:Ho3+/Yb3+ spherical particles synthesized by spray pyrolysis were investigated by changing the dopant concentration and calcination temperature. Citric acid (CA), ethylene glycol (EG) and N, N-dimethylformamide (DMF) were used to control the microstructure of Y2O3:Ho3+/Yb3+ particles. In terms of achieving the highest UC green emission intensity, the optimal concentrations of Ho3+ and Yb3+ were found to be 0.3% and 3.0%, respectively. In addition, the UC intensity of Y2O3:Ho3+/Yb3+ showed a linear relationship with the crystallite size. The use of organic additives allows Y2O3:Ho3+/Yb3+ particles to have a spherical and dense structure, resulting in significantly reducing the surface area while maintaining high crystallinity. As a result, the UC emission intensity of Y2O3:Ho3+/Yb3+ particles having a dense structure showed the UC emission intensity about 3.8 times higher than that of hollow particles prepared without organic additives. From those results, when Y2O3:Ho3+/Yb3+ particles are prepared by the spray pyrolysis process, the use of the CA/EG/DMF mixtures as organic additives has been suggested as an effective way to substantially increase the UC emission intensity.

Feasibility Study for the Location of Air Quality Monitoring Network in Daegu Area (대구지역 대기오염자동측정망 위치의 타당성 분석)

  • Choi, Sung-Woo;Lee, Jung-Beom
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.81-91
    • /
    • 2011
  • Air quality monitoring networks are very important facilities to manage urban air pollution control and to set up an environmental policy. Since air quality monitoring network of Daegu was allocated from 1980s to mid-90s, there is need to reevaluate it and relocated its site. This study was evaluated the position of Daegu air quality monitoring station by unit environmental sensitivity index, grid emission rate, CAI (Comprehensive Air-quality Index) point. The investigation domain covered an area of 16 $\times$ 24 km centered at the metropolitan area of Daegu with grid spacing of 2 km. The location of alternative air quality monitoring networks was selected through optimization and quintiles analysis of total score. The result showed that all things considered, new air quality monitoring network need to install grid numbers 10, 28, 36, 37, 46. We also recommand three scenarios of alternative air quality monitoring network when considering unit environmental sensitivity index, emission rate and CAI point.