• Title/Summary/Keyword: Emission Color

Search Result 445, Processing Time 0.03 seconds

White OLED Structures Optimized for RGB and RGBW Formats

  • Hatwar, T.K.;Spindler, J.P.;Ricks, M.L.;Young, R.H.;Cosimbescu, L.;Begley, W.J.;Slyke, S.A. Van
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.816-819
    • /
    • 2004
  • White-emitting OLEDs have been prepared that provide emission close to 6500 K color temperature (D65) with exceptional stability and high efficiency. The combination of host and dopant materials offers significant improvement for full color displays, in terms of power consumption, with minimal changes in color and efficiency with current density. These features are important for fabricating RGB and RGBW full color displays using white OLEDs with color filters.

  • PDF

Color Evolution in Anodized Titanium (열산화에 의한 티타늄의 발색효과)

  • 송오성;홍석배;이정임
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.325-329
    • /
    • 2002
  • We investigated the oxide thickness and color evolution with the oxidation temperatures between $370^{\circ}C$ and $950^{\circ}C$ for 30 minutes in an electric furnace. Oxide thickness and color index were determined by cross sectional field emission scanning electron microscopy (FESEM) images and digital camera images, respectively. We confirmed that thermal oxidation was suitable for the mass production of color-titanium products, while coloring process window was narrow compared with anodizing oxidation process.

Microcavity Effect of Top-emission Organic Light-emitting Diodes Using Aluminum Cathode and Anode

  • Lee, Chang-Jun;Park, Young-Il;Kwon, Jang-Hyuk;Park, Jong-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1344-1346
    • /
    • 2005
  • We report microcavity effect of top emission organic light-emitting diodes (OLEDs) by using Al cathode and anode, which are feasible for not only top emission EL and angle dependant effects but facile evaporation process without ion sputtering. The device in case of $Alq_3$ green emission showed largely shifted EL maximum wavelength as 650 nm maximum emission. It was also observed that detection angle causes different EL maximum wavelength and different CIE values in R, G, B color emission. As a result, the green device using $Alq_3$ emission showed 650 nm emission ($0^{\circ}$) to 576 nm emission ($90^{\circ}$) as detection angle changed. We believe that these phenomena can be also explained with microcavity effect which depends on the different length of light path caused by detection angle.

p" Color Field Emission Displays Using Carbon Nanotube Emitters

  • Lee, N.S.;Park, W.B.;Kim, J.M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.211-211
    • /
    • 2000
  • Carbon nanotubes (CNTs) have been spotlighted as one of promising field emission displays(FEDs). For the first time, to authors knowledge, we have developed the 9" color CNT-FEDs with the resolution of 240x576 lines. The 9" CNT-FEDs with diode-type and triode-type structures are presented. The well-dispersed CNT paste was squeezed onto the metal-patterned cathode glass. For the anode plate, the Y2O2S:Eu, ZnS:Ag,Cl low-voltage phosphors were printed for red, green, and blue colors, respectively. The vacuum-packaged panel maintained the vacuum level of 1x10-7 Torr. The uniform moving images vacuum-packaged panel maintained the vacuum level of 1x10-7 Torr. The uniform moving images were demonstrated at 2 V/um. High brightness of 800, 200, and 150cd/m2 was observed on the green, red, and blue phosphors at V/um, respectively. Field emission characteristics of a triode-type CNT-FED were simulated using a finite element method. the resultant field strength on the cathode was modulated by gate bias and emitted electrons were focused on the anode. A relatively uniform emission image was experimentally achieved at the 800V anode. A relatively uniform emission image was experimentally achieved at the 800V anode and the 50-180 V gate biases. Energy distribution of electrons emitted from CNTs was measured using an energy analyzer. The maximum peak of energy curve corresponded to the Fermi energy level of CNTs. The whole fabrication processed of CNT-FEDs were fully scalable and reproducible. Our CNT-FEDs has demonstrated the high potential of large-area and full-color applications with very low cost fabrication and low power consumption.

  • PDF

Improvement In recombination at a two-emission-layers interface For White-light-emitting organic electroluminescent device

  • Song, Tae-Joon;Ko, Myung-Soo;Lee, Gyu-Chul;Cho, Sung-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.928-931
    • /
    • 2003
  • In order to realize full color display, two approaches were used. The first method is the patterning of red, green, and blue emitters using a selective deposition. Another approach is based on a white-emitting diode, from which the three primary colors could be obtained by micro-patterned color filters. White-light-emitting organic light emitting devices (OLEDs) are attracting much attention recently due to potential applications such as backlights in liquid crystal displays (LCDs) or other illumination purposes. In order for the white OLEDs to be used as backlights in LCDs, the light emission should be bright and have Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.33, 0.33). For obtaining white emission from OLEDs, different colours should be mixed with proper balances even though there are a few different methods for mixing colors. In this study, we will report a white organic electroluminescent device using exciton diffusion length concept.

  • PDF

A study on the simplified fabrication structure for the multi-color OLED display

  • Baek, H.I.;Kwon, D.S.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1046-1049
    • /
    • 2006
  • We proposed a simplified fabrication structure and method which can provide separate Red (R), Green (G), Blue (B), and White (W) OLED pixels with 2 metal-mask changes in emitting layer fabrication inspired from the structure of multi-layer white OLED and carrier blocking mechanism. A red emission layer for the R and W pixel with 1st mask, and then a blue emission layer with hole blocking layer for the B and W pixel with 2nd mask, and finally a common green emission layer were deposited sequentially. We expect that this concept would be very useful to the actual fabrication of multi-color OLED display although additional optimization is needed.

  • PDF

Long-lifetime Green Phosphorescent OLEDs for Low Power Displays

  • Weaver, Michael S.;Adamovich, Vadim I.;Xia, Sean C.;Fiordeliso, James J.;Kwong, Raymond C.;Brown, Julie J.;Lee, Kwan-Hee;Lim, Choon-Woo;Kim, Sung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.38-41
    • /
    • 2009
  • We demonstrate a new commercial green phosphorescent organic light emitting device (OLED) in a bottom emission device and top emission microcavity. The bottom and top emitting phosphorescent OLEDs (PHOLED$^{TM}$s) had luminance efficiencies of 60cd/A and 137cd/A respectively, at a luminance of 1,000cd/$m^2$. The top emission microcavity was close to 1953 NTSC color requirements with 1931 CIE color coordinates of 0.231, 0.718. A record green PHOLED lifetime of >3,500hrs to LT95 from 4000cd/$m^2$ is demonstrated for the microcavity device.

  • PDF

OH, SiO and $H_2O$ maser emission in O-rich AGB stars

  • Kwon, Young-Joo;Suh, Kyung-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.140.1-140.1
    • /
    • 2012
  • We investigate properties of maser emission for 3373 O-rich AGB stars. We divide the sample stars into four different groups whether they were detected by OH, SiO and $H_2O$ maser emission or not. To understand the nature of the maser sources, we present various infrared two-color diagrams (2CDs) using IRAS, near infrared and AKARI data. For each group, we compare the positions on the various infrared 2CDs with theoretical models. We find that OH maser sources generally show higher color indices and larger dust optical depths than SiO or $H_2O$ maser sources. This could be due to differences of the mass-loss rates and/or variability which may influence the maser pumping mechanisms.

  • PDF

PROPERTIES OF OH, SIO, AND H2O MASER EMISSION IN O-RICH AGB STARS

  • Kwon, Young-Joo;Suh, Kyung-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.6
    • /
    • pp.139-146
    • /
    • 2012
  • We investigate the properties of OH, SiO, and $H_2O$ maser emission in O-rich AGB stars. We use a sample of 3373 objects, which is an updated version of the list of O-rich AGB stars presented in Suh & Kwon (2011). We divide the 3373 O-rich AGB stars into four different groups based on the maser emission: OH maser sources (1533), SiO sources (1627), $H_2O$ sources (452), and sources with no maser (610). To understand the nature of the maser sources, we present various infrared two-color diagrams (2CDs) using IRAS, 2MASS, and AKARI data. For each group, we compare the positions on various infrared 2CDs with theoretical models. We find that the OH maser sources generally show larger color indices and larger dust optical depths than SiO or $H_2O$ sources. We suggest that the differences of the color indices for different maser sources are due to different mass-loss rates and dust formation processes.

White organic light emitting diode with single emission layer DPVBi partially doped with rubrene

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1002-1005
    • /
    • 2006
  • In this study, we fabricated white organic light emitting devices (WOLEDs) to use single emission layer, DPVBi with partially doped Rubrene. To realize white color, rubrene with 3.6% was partially doped with the gap from interface between DPVBi and hole transport layer NPD in a definite DPVBi layer. As the gap was increased, the intensity of orange peak grows less and less. The WOLED with gap of $5\;{\AA}$ has the best color stability and its color coordination is (0.345, 0.321) at 6V.

  • PDF