• Title/Summary/Keyword: Emission Category

Search Result 63, Processing Time 0.023 seconds

Comparison of Greenhouse Gas Emissions from Road Transportation in Local Cities/Counties of Gyeonggi Province by Calculation Methodologies (도로수송부문의 온실가스 배출량 산정방법에 따른 경기도 시·군별 배출량 비교)

  • Lee, Tae-Jung;Kim, Ki-Dong;Jung, Won-Seok;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.454-465
    • /
    • 2012
  • The Korean government decided to reduce 30% of GHG (greenhouse gas) emissions BAU in 2020. Since many efforts to reduce emissions are urgently needed in Korea, the central administrative organization urges local governments to establish their own reduction schemes. Among many GHG emission categories, the emission from mobile source in Gyeonggi Province accounted for 25.3% of total emissions in 2007 and further the emission from road transport sector occupied the most dominant portion in this transportation category. The objective of this study was to compare 3 types of GHG emissions from road transport sector in 31 local cities/counties of Gyeonggi Province, which have been estimated by Tier 1, Tier 2, and Tier 3 methodologies. As results, the GHG emission rates by the Tier 1 and Tier 2 were $19,991kt-CO_2\;Eq/yr$ and $18,511kt-CO_2\;Eq/yr$, respectively. On the other hand, the emission rate by Tier 3 excluding a branch road emission portion was $18,051kt-CO_2\;Eq/yr$. In addition, the total emission rate including all the main and branch road portions in Gyeonggi Province was $24,152kt-CO_2\;Eq/yr$, which was estimated by a new Tier 3 methodology. Based on this study, we could conclude that Tier 3 is a reasonable methodology than Tier 1 or Tier 2. However, more accurate and less uncertain methodology must be developed by expanding traffic survey areas and adopting a suitable model for traffic volumes.

Characteristics of Ozone Precursor Emissions and POCP in the Biggest Port City in Korea

  • Song, Sang-Keun;Shon, Zang-Ho;Son, Hyun Keun
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.146-157
    • /
    • 2015
  • Emissions of ozone precursors ($NO_x$ and VOCs) and photochemical ozone creation potentials (POCPs) of VOC emission sources were investigated in the largest port city (i.e., Busan), Korea during the year 2011. This analysis was performed using the Clean Air Policy Support System (CAPSS) national emission inventory provided by the National Institute of Environmental Research (NIER), Korea. For $NO_x$, the emissions from off-road mobile sources in Busan were the most dominant (e.g., $31,202ton\;yr^{-1}$), accounting for about 60% of the total $NO_x$ emissions. The emission from shipping of off-road mobile sources (e.g., $24,922ton\;yr^{-1}$) was a major contributor to their total emissions, amounting to 47% of the total $NO_x$ emissions due to the port-related activities in Busan. For VOCs, the emission source category of solvent usage was predominant (e.g., $36,062ton\;yr^{-1}$), accounting for approximately 82% of the total VOC emissions. Out of solvent usages, the emission from painting was the most dominant ($22,733ton\;yr^{-1}$), comprising 52% of the total emissions from solvent usages. The most dominant VOC species emitted from their sources in Busan was toluene, followed by xylene, butane, ethylbenzene, n-butanol, isopropyl alcohol, and propane. The major emission sources of toluene and xylene were found to be painting of coil coating and ship building, respectively. The value of POCP for the off-road mobile source (61) was the highest in ten major activity sectors of VOC emissions. Since the POCP value of ship transport of off-road mobile source (72) was also high enough to affect ozone concentration, the ship emission can play a significant role in ozone production of the port city like Busan.

A Comparative Study of Predicted Environmental Concentrations from ECETOC TRA Based on Environmental Release Categories/Specific Environmental Release Categories and K-CHESAR Using Main/Industrial/Use Categories (환경배출범주/특수환경배출범주 기반 ECETOC TRA 및 주요/산업/용도 분류체계 이용의 K-CHESAR에 의한 환경예측농도 비교 연구)

  • Hyun Pyo Jeon;Jisu Yang;Hana Jo;Eun Kyung Choe;Sanghun Kim
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.312-323
    • /
    • 2023
  • Background: Environmental concentrations of substances can be estimated by K-CHESAR based on main, industrial, and use categories (MC/IC/UC) and ECETOC TRA based on environmental or specific environmental categories (ERC or spERC). Objectives: Three different systems for estimating environmental concentrations were compared to figure out their order with possible reasons along with relationship of regional predicted environmental concentrations (PECregional) and final PEClocal for various uses of a substance. Methods: Typical uses of the case substance and their corresponding ERCs were selected from the webpage of the European Chemical Agency. Proper MC/IC/UC and spERC were assigned to each ERC. Emission fractions were compared for each assessment code from the available database. PECs were calculated by three estimating systems: K-CHESAR using MC/IC/UC, ECETOC TRA using ERC, and ECETOC TRA using spERC with their default values for input parameters. Percentage of PECregional to PEClocal were manually calculated for each use. Results: Emission factors decreased in the order of ERC > MC/IC/UC > spERC. Values of the final PEClocal derived as sum of PECregional and Clocal decreased in the order of calculations using ECETOC TRA-ERC>KCHESAR with MC/IC/UC>ECETOC TRA-spERC for all environmental media. Percentages of PECregional,water to PEClocal,water ranged from 0 to 10.3% in industrial uses calculated with MC/IC/UC and ERC but 96.3 to 100% in wide dispersive uses of ERC and spERC where values of Clocal,water are estimated to be very low. Conclusions: ECETOC TRA generated the most refined PNEC values with spERC and the least with ERC, while K-CHESAR with MC/IC/UC generated values between the two results. The ratio of PECregional to PEClocal can be a good measure for performing suitable estimation of PNECs according to use.

Data Build-up for the Construction of Korean Specific Greenhouse Gas Emission Inventory in Livestock Categories

  • Won, S.G.;Cho, W.S.;Lee, J.E.;Park, K.H.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • Many studies on methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock industries have revealed that livestock production directly contributes to greenhouse gas (GHG) emissions through enteric fermentation and manure management, which causes negative impacts on animal environment sustainability. In the present study, three essential values for GHG emission were measured; i.e., i) maximum $CH_4$ producing capacity at mesophilic temperature ($37^{\circ}C$) from anaerobically stored manure in livestock category ($B_{0,KM}$, Korean livestock manure for $B_0$), ii) $EF_{3(s)}$ value representing an emission factor for direct $N_2O$ emissions from manure management system S in the country, kg $N_2O-N$ kg $N^{-1}$, at mesophilic ($37^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures, and iii) $N_{ex(T)}$ emissions showing annual N excretion for livestock category T, kg N $animal^{-1}$ $yr^{-1}$, from different livestock manure. Static incubation with and without aeration was performed to obtain the $N_2O$ and $CH_4$ emissions from each sample, respectively. Chemical compositions of pre- and post- incubated manure were analyzed. Contents of total solids (% TS) and volatile solid (% VS), and the ratio of carbon to nitrogen (C/N) decrease significantly in all the samples by C-containing biogas generation, whereas moisture content (%) and pH increased after incubation. A big difference of total nitrogen content was not observed in pre- and post-incubation during $CH_4$ and $N_2O$ emissions. $CH_4$ emissions (g $CH_4$ kg VS-1) from all the three manures (sows, layers and Korean cattle) were different and high C/N ratio resulted in high $CH_4$ emission. Similarly, $N_2O$ emission was found to be affected by % VS, pH, and temperature. The $B_{0,KM}$ values for sows, layers, and Korean cattle obtained at $37^{\circ}C$ are 0.0579, 0.0006, and 0.0828 $m^3$ $CH_4$ kg $VS^{-1}$, respectively, which are much less than the default values in IPCC guideline (GL) except the value from Korean cattle. For sows and Korean cattle, $N_{ex(T)}$ values of 7.67 and 28.19 kg N $yr^{-1}$, respectively, are 2.5 fold less than those values in IPCC GL as well. However, $N_{ex(T)}$ value of layers 0.63 kg N $yr^{-1}$ is very similar to the default value of 0.6 kg N $yr^{-1}$ in IPCC GLs for National greenhouse gas inventories for countries such as South Korea/Asia. The $EF_{3(s)}$ value obtained at $37^{\circ}C$ and $55^{\circ}C$ were found to be far less than the default value.

A Study on NOx Emission Control Methods in the Cement Firing Process Using Data Mining Techniques (데이터 마이닝을 이용한 시멘트 소성공정 질소산화물(NOx)배출 관리 방법에 관한 연구)

  • Park, Chul Hong;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.739-752
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the relationship between kiln processing parameters and NOx emissions that occur in the sintering and calcination steps of the cement manufacturing process and to derive the main factors responsible for producing emissions outside emission limit criteria, as determined by category models and classification rules, using data mining techniques. The results from this study are expected to be useful as guidelines for NOx emission control standards. Methods: Data were collected from Precalciner Kiln No.3 used in one of the domestic cement plants in Korea. Thirty-four independent variables affecting NOx generation and dependent variables that exceeded or were below the NOx emiision limit (>1 and <0, respectively) were examined during kiln processing. These data were used to construct a detection model of NOx emission, in which emissions exceeded or were below the set limits. The model was validated using SPSS MODELER 18.0, artificial neural network, decision treee (C5.0), and logistic regression analysis data mining techniques. Results: The decision tree (C5.0) algorithm best represented NOx emission behavior and was used to identify 10 processing variables that resulted in NOx emissions outside limit criteria. Conclusion: The results of this study indicate that the decision tree (C5.0) can be applied for real-time monitoring and management of NOx emissions during the cement firing process to satisfy NOx emission control standards and to provide for a more eco-friendly cement product.

Indoor Emission Characteristics of Liquid Household Products using Purge - and - Trap Method

  • Kwon, Ki-Dong;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.203-210
    • /
    • 2007
  • Since the emissions composition from the household products have potentially been associated with health risks for building occupants, the chemical composition emitted from the products should be surveyed. The current study identified the emission composition for 42 liquid household products, using a purge-and-trap method. This evaluation was done by classifying the household products into five product classes (deodorizers, household cleaners, color removers, pesticides, and polishes). Nineteen compounds were chosen on the basis of selection criteria. The quality control program for purge-and-trap and analytical systems included tests of laboratory blank Tenax traps and blank water samples, and the determination of calibration equation, measurement precision, method detection limit (MDL), and recovery. The number of chemicals varied according to the product categories, ranging from 4 for the product category of bleaches to 12 for the product categories of air fresheners and nail color removers. For all product categories, the emission composition and concentrations varied broadly according to product. It is noteworthy that most household products emit limonene: 19 of 25 cleaning products; 5 of 6 deodorizers; 1 of 3 pesticides; 3 of 3 color removers; and 4 of 5 polishes. It was suggested that the use of household products sold in Korea could elevate the formation of secondary toxic pollutants in indoor environments, by the reaction of limonene with ozone, which entered indoor environments or might be generated by indoor sources such as electronic air cleaning devices and copying machines.

Life cycle impact assessment of the environmental infrastructures in operation phase: Case of an industrial waste incineration plant

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.266-276
    • /
    • 2017
  • A life cycle impact assessment was applied in an industrial waste incineration plant to evaluate the direct and indirect environmental impacts based on toxicity and non-toxicity categories. The detailed life cycle inventory of material and energy inputs and emission outputs was compiled based on the realistic data collected from a local industrial waste incineration plant, and the Korean life cycle inventory and ecoinvent database. The functional unit was the treatment of 1 tonne of industrial waste by incineration and the system boundary included the incineration plant and landfilling of ash. The result on the variation of the impact by the unit processes showed that the direct impact was decreased by 79.3, 71.6, and 90.1% for the processes in a semi dry reactor, bag filter, and wet scrubber, respectively. Considering the final impact produced from stack, the toxicity categories comprised 91.7% of the total impact. Among the toxicity impact categories, the impact in the eco-toxicity category was most significant. A separate estimation of the impact due to direct and indirect emissions showed that the direct impact was 97.7% of the total impact. The steam recovered from the waste heat of the incineration plant resulted in a negative environmental burden.

Development of Traffic Volume Estimation System in Main and Branch Roads to Estimate Greenhouse Gas Emissions in Road Transportation Category (도로수송부문 온실가스 배출량 산정을 위한 간선 및 지선도로상의 교통량 추정시스템 개발)

  • Kim, Ki-Dong;Lee, Tae-Jung;Jung, Won-Seok;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.233-248
    • /
    • 2012
  • The national emission from energy sector accounted for 84.7% of all domestic emissions in 2007. Of the energy-use emissions, the emission from mobile source as one of key categories accounted for 19.4% and further the road transport emission occupied the most dominant portion in the category. The road transport emissions can be estimated on the basis of either the fuel consumed (Tier 1) or the distance travelled by the vehicle types and road types (higher Tiers). The latter approach must be suitable for simultaneously estimating $CO_2$, $CH_4$, and $N_2O$ emissions in local administrative districts. The objective of this study was to estimate 31 municipal GHG emissions from road transportation in Gyeonggi Province, Korea. In 2008, the municipalities were consisted of 2,014 towns expressed as Dong and Ri, the smallest administrative district unit. Since mobile sources are moving across other city and province borders, the emission estimated by fuel sold is in fact impossible to ensure consistency between neighbouring cities and provinces. On the other hand, the emission estimated by distance travelled is also impossible to acquire key activity data such as traffic volume, vehicle type and model, and road type in small towns. To solve the problem, we applied a hierarchical cluster analysis to separate town-by-town road patterns (clusters) based on a priori activity information including traffic volume, population, area, and branch road length obtained from small 151 towns. After identifying 10 road patterns, a rule building expert system was developed by visual basic application (VBA) to assort various unknown road patterns into one of 10 known patterns. The expert system was self-verified with original reference information and then objects in each homogeneous pattern were used to regress traffic volume based on the variables of population, area, and branch road length. The program was then applied to assign all the unknown towns into a known pattern and to automatically estimate traffic volumes by regression equations for each town. Further VKT (vehicle kilometer travelled) for each vehicle type in each town was calculated to be mapped by GIS (geological information system) and road transport emission on the corresponding road section was estimated by multiplying emission factors for each vehicle type. Finally all emissions from local branch roads in Gyeonggi Province could be estimated by summing up emissions from 1,902 towns where road information was registered. As a result of the study, the GHG average emission rate by the branch road transport was 6,101 kilotons of $CO_2$ equivalent per year (kt-$CO_2$ Eq/yr) and the total emissions from both main and branch roads was 24,152 kt-$CO_2$ Eq/yr in Gyeonggi Province. The ratio of branch roads emission to the total was 0.28 in 2008.

Development of the Assessment Framework for the Environmental Impacts in Construction

  • Tahoon Hong;Changwoon Ji;Kwangbok Jeong;Joowan Park
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.196-203
    • /
    • 2013
  • Environmental problems like global warming have now become important issues that should be considered in all industries, including construction. In South Korea, many studies have been conducted to achieve the government's goals of reduction in environmental impacts. However, the research on buildings has only focused on CO2 emission as a research target despite the fact that other environmental impacts resulting from ozone depletion and acidification should also be considered, in addition to global warming. In this regard, this study attempted to propose assessment criteria and methods to evaluate the environmental performance of the structures from various aspects. The environmental impact category can be divided into global impacts, regional impacts, and local impacts. First, global impacts include global warming, ozone layer depletion, and abiotic resource depletion, while regional impacts include acidification, eutrophication, and photochemical oxidation. In addition, noise and vibration occurring in the building construction phase are defined as local impacts. The evaluation methods on the eight environmental impacts will be proposed after analyzing existing studies, and the methods representing each environmental load as monetary value will be presented. The methods presented in this study will present benefits that can be obtained through green buildings with a clear quantitative assessment on structures. Ultimately, it is expected that if the effects of green buildings are clearly presented through the findings of this study, the greening of structures will be actively expanded.

  • PDF

Analysis of Trade benefit Through EU Carbon Border Adjustment Mechanism (CBAM) Target Item's footprint tracking process and calculation -LCA(ISO 14040) analysis of steel products based on EU PAS 2050 and product category rules (PCR)- (EU 탄소국경조정제도(CBAM) 대상 품목 탄소발자국 추적 과정과 산정을 통한 통상 편익 분석 - EU PAS 2050과 제품 범주 규칙(PCR)에 기초한 철강제품의 LCA(ISO 14040) 분석)

  • Yang-kee Lee;Sung-woo, Ryoo
    • Korea Trade Review
    • /
    • v.47 no.6
    • /
    • pp.355-375
    • /
    • 2022
  • In this study, LCA based on EU PAS 2050 and Product Category Rules (PCR) was conducted for steel products with the highest proportion of Korea's exports to the EU among the carbon border adjustment items that were passed by the EU Parliament in June and applied to imports from 2025. Carbon emissions were calculated by (ISO 14040) analysis. As a result of the analysis, the total emission is 394,000 tons, and when converted to the EU ETS weekly price, it is 39,000.000 euros, which is about 5% of the export amount of 734 million dollars. This is the same effect as a 5% tariff increase. This study applies international standards in calculating the carbon footprint and provides information that is closest to the expected amount to be imposed in the future EU CBAM, providing the effect of enabling exporters to establish trade strategies and international competitiveness measures in advance.