• Title/Summary/Keyword: Emission Calculation

Search Result 352, Processing Time 0.032 seconds

A Basic Study for the Calculation of Environmental Impacts on the Life Cycle of Tilting Train (전과정 틸팅열차의 정량적인 환경부하 산출을 위한 기초 연구)

  • Lee, Jae-Young;Kim, Yong-Ki;Lee, Cheul-Kyu;Jeon, Yong-Sam;Lee, Jong-Beom
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1125-1127
    • /
    • 2008
  • Recently, the tilting train has been developed to increase speed in conventional line. Due to global environmental changes, it is necessary to investigate quantitatively the environment of tilting train. This study evaluated the environmental impacts of tilting train to grasp a key issue environmentally. The related data were collected from bill of material (BOM). The system boundary of tilting train was determined by its cumulative weight. In addition, the $CO_2$ emission in the operation phase of tilting train was calculated. Based on this basic study, the environment of tilting train will be assessed exactly through the establishment of life cycle inventory database for its main components.

  • PDF

Precise Air-Fuel Ratio Control on Transient Conditions with the PC-ECU in SI Engine (PC-ECU를 이용한 SI 기관의 비정상상태 정밀공연비 제어)

  • Yoon, S.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.9-16
    • /
    • 2000
  • In a SI engine, three-way catalyst converter has the best efficiency when A/F ratio is near the stoichiometry. The feedback control using oxygen sensors in the commercial engine has limits caused by the system delays. So it is necessary to control fuel quantity in accordance with intake air amount in order to reduce exhaust emission and improve the specific fuel consumption. Precise A/F ratio control requires measurement of air amount with respect to the cylinder and injection fuel according to the air amount In this paper, we applied nonlinear fuel injection model and developed the algorithm of A/F ratio control. This algorithm includes the methods of measurement of transient air mass flowing into each cylinder, of calculation of injection pulse width for measured air mass, and the method of feedback and engine control by using lambda sensor. Also we developed control program for IBM-PC by using C++ Builder, and tested it in the commercial engine.

  • PDF

The effect of RF electric fields from an atmospheric micro-plasma needle device on the death of cells (침형 상압 마이크로 플라즈마 장치에서 발생하는 전기장이 세포 사멸에 미치는 효과)

  • Yoon, Hyun-Jin;Shon, Chae-Hwa;Kim, Gyoo-Cheon;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2249-2254
    • /
    • 2008
  • A non-thermal micron size plasma needle is applicable for medical treatment because it includes radicals, charged particles, ultraviolet emission, and strong electric fields. The electric fields around the plasma needle device driven by a radio frequency wave are investigated in order to calculate the power delivered to the cell. A commercial multi-physics code, CFD-ACE, was utilized for the calculation of electric fields for the optimization of the needle structure. The electric field and energy absorption profiles are presented with the variation of the device structure and the distance between the needle and tissues. The living tissues effectively absorb the radio frequency power from the plasma needle device with the covered pyrex structure.

Study on the Flame Structures of Counter Flow Flames by Using Different Gas Radiation Models (가스 복사 모델에 따른 대향류화염에서의 화염 구조 연구)

  • Park, Won-Hee;Kim, Dong-Hyun;Kim, Tae-Kuk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1493-1498
    • /
    • 2004
  • WSGGM with gray gas regrouping is successfully applied to study the flame structure of counter flow flames including effect of radiative transfer. The statistical narrow band model is used to obtain the benchmark solutions. Results obtained by using the optically thin model are shown to overestimate the emission and to predict the flame structures inadequately especially for optically thick and low stretch rate flames. Computed results by using the WSGGM with 10 gray gases and SNB model show reasonable agreements with each other, and the required calculation time for the WSGGM is acceptable for engineering applications.

  • PDF

Betatron Radiation of an Off-axis Injected Electron in a Laser Wakefield Accelerator

  • Hwang, Seok-Won;Lee, Hae-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.86-91
    • /
    • 2009
  • The electrons injected into a laser wakefield undergo betatron oscillation and give rise to the emission of intense X-ray radiation. To investigate the generation conditions of the X-rays, the relativistic motion of an electron injected in an off-axis position has been simulated with wakefield profiles which are pre-calculated with a two-dimensional particle-in-cell code. The wakefield with a plasma density of $1.78{\times}10^{18}\;cm^{-3}$ is generated by the laser with an intensity of $1.37{\times}10^{18}\;W/cm^2$ and a pulse width of 30 fs. From the calculation of the single particle motion, the characteristics of the betatron radiation are investigated in the time domain. As the transverse injection position increases, the power and the duration time of the radiation increase, but the width of each pulse decreases.

Calculation of Post-Arc Current According to Turbulence Parameter (난류변수에 따른 아크-후 전류의 계산)

  • Song, Ki-Dong;Lee, Byeong-Yoon;Park, Kyong-Yop;Park, Soon-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.693-695
    • /
    • 2003
  • 차단기내에서 일어나는 아크철상을 모의하기 위해서는 수학적으로 표현할 수 있어야 한다. 하지만, 아크의 물리적 현상이 대단히 복잡하여 수식화 하기가 쉽지 않을 백만 아니라 논리적으로 이상이 없는 결과를 얻는 일도 쉽지 않다. 특히, 아크를 표현하는 수식에는 많은 경험적 변수 또는 실험결과를 고려하여 조정되어야 할 변수가 존재한다. 그 대표적인 것이 난류 변수(turbulence parameter)와 방사에너지 전달에서의 방사계수(emission coefficient)이다. 본 논문은 차단기가 전류차단 후의 열적회복과정에서, 난류변수에 따른 아크-후 전류(post arc current)를 계산한 결과를 제시한 것이다. 난류변수에 따른 아크의 냉각효과를 검토하고 있으며, 실험결과 비교하여 가장 잘 맞는 난류변수의 값을 제시하고 있다.

  • PDF

Examination of the domestic harmonic standard introduction based on measurement of harmonic current (고조파전류 측정에 근거한 국내 고조파 관리기준 검토)

  • Park, Yong-Up;Kang, Moon-Ho;Lee, Nam-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.539-540
    • /
    • 2007
  • In order to increase an efficiency of electric machine, the power electric devices are rapidly increasing of late. These electric components are mainly caused to lower of power quality. To take precautions against lower of power quality, the advanced countries already made effort to control of harmonic level. For these harmonic control of advanced countries have applied harmonic planning level, emission of harmonic based on the technical calculation and experiment. In this paper, we have investigated the introduction abroad advanced country standard through compared IEEE, IEC with the real measurement of domestic harmonic level.

  • PDF

Construction of Greenhouse Gas Inventory of Private Industry of Chungcheongbuk-do and Analysis of Greenhouse Gas Mitigation Technology (충청북도 민간 산업체에 대한 온실가스 인벤토리 구축 및 감축기술 분석)

  • Lim, Soo Min;Ahn, Joo Young;Jung, Cho Shi;Park, Jung Hoon
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • Greenhouse gas (GHG) emissions of private industry of Chungcheongbuk-do were estimated. GHG emissions were classified by industry and GHG emissions ratio of each industry of Chungcheongbuk-do was found. Characteristics of GHG emissions of Chungcheongbuk-do and GHG mitigation technology were analyzed. To calculate GHG emissions, equations proposed through GHG emissions calculation guidelines published by Korean Energy Agency in 2009 were used. As a result, GHG emissions ratio of cement, semiconductor, paper and petrochemical industry was about 73%, 16%, 5%, and 2% respectively. GHG mitigation technologies of cement, semiconductor and waste were investigated. For cement, amine technology, for semiconductor, scrubber system and for waste, land fill gas utilization were analyzed.

Numerical Model Simulation of DF-CO$_2$ Transfer Chemical Laser

  • Kim, Sung-Ho;Cho, Ung-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.282-288
    • /
    • 1989
  • Theoretical analysis of DF-$CO_2$ transfer chemical laser is performed through simple kinetic model consisting of 30 chemical reactions. In this model, we calculate the power theoretically by solving the rate equations, which are related to the $D_2\;+\;F_2$ chain reaction and the DF-$CO_2$ resonance energy transfer, combined with both the gain processes and the stimulated emission processes. The calculated powers are verified with previously reported results in good agreements. The output energy rises linearly with the increase in pressure, and the duration time of output pulse show the inverse dependence on pressure. Through the detailed calculation of temperature and concentrations of reactants as a function of time, it is found that the deactivation processes of DF(v) can be neglected in low pressure, but they have to be considered in high pressure. From the parametric study for the variation on [$D_2]/[F_2$] and [$CO_2]/[D_2\;+\;F_2$] at several constant total pressure, the optimum lasing conditions are found to be in a range of 1/3 to 1 and 2 to 4, respectively.

Development of a Greenhouse Gas Monitoring System for Construction Projects (건설사업의 온실가스 모니터링 시스템 개발)

  • Kim, Tae Yeong;Park, Hee-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1589-1597
    • /
    • 2014
  • For several decades, economic growth has achieved in the aspect of productivity and effectiveness not environmental friendly. As a result, global warming is a major agenda to solve. Therefore, global effort to sustainable development has been adopted like UNFCCC and Kyoto protocol that aimed to reduce greenhouse gas. However, the construction industry has only focused on applying techniques for using less energy sources not monitoring sustainable construction and development. Therefore, this study developed a tool for monitoring greenhouse gas emissions in construction industry. The proposed system evaluates and estimates BAU (Business as usual) for each phase of a construction project. For this purpose, analyzed the greenhouse gas emission factors coincide to life cycle of a construction project. The scope of monitoring is determined according to data availability and emission factor. Then, the system framework is developed and the calculation logic is proposed the system features provide comparison between the emission estimates for eco-friendly design and the actual emission of construction and operation phases. The system would be utilized as a tool for supporting to green construction realization and green construction performance evaluation.