• Title/Summary/Keyword: Emergency management Agency

Search Result 202, Processing Time 0.02 seconds

Aspect of the chief of state guard EMP (Electro Magnetic Pulse) protection system for the consideration (국가원수 경호적 측면에서의 EMP(Electro Magnetic Pulse) 방호 시스템에 대한 고찰)

  • Jung, Joo-Sub
    • Korean Security Journal
    • /
    • no.41
    • /
    • pp.37-66
    • /
    • 2014
  • In recent years, with the development of computers and electronics, electronics and communication technology in a growing and each part is dependent on the cross-referencing makes all electronic equipment is obsolete due to direct or indirect damage EMP. Korea and the impending standoff North Korea has a considerable level of technologies related to the EMP, EMP weapons you already have or in a few years, the development of EMP weapons will complete. North Korea launched a long-range missile and conducted a nuclear test on several occasions immediately after, when I saw the high-altitude nuclear blackmail has been strengthening the outright offensive nuclear EMP attacks at any time and practical significance for the EMP will need offensive skills would improve. At this point you can predict the damage situation of Korea's security reality that satisfy the need, more than anything else to build a protective system of the EMP. The scale of the damage that unforeseen but significant military damage and socio-economic damage and fatalities when I looked into the situation which started out as a satellite communications systems and equipment to attack military and security systems and transportation, finance, national emergency system, such as the damage elsewhere. In General, there is no direct casualties reported, but EMP medical devices that rely on lethal damage to people who can show up. In addition, the State power system failure due to a power supply interruption would not have thought the damage would bring State highly dependent on domestic power generation of nuclear plants is a serious nuclear power plant accident in the event of a blackout phenomenon can lead to the plant's internal problems should see a forecast. First of all, a special expert Committee of the EMP, the demand for protective facilities and equipment and conduct an investigation, he takes fits into your budget is under strict criteria by configuring the contractors should be sifting through. He then created the Agency for verification of performance EMP protection after you have verified the performance of maintenance, maintenance, safety and security management, design and construction company organized and systematic process Guard facilities or secret communications equipment and perfect for the EMP, such as protective equipment maneuver system should take.

  • PDF

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.