• Title/Summary/Keyword: Emergency guiding

Search Result 23, Processing Time 0.023 seconds

Design of Emergency Evacuation Guiding System with Serially Connected Multi-channel Speakers (직렬 스피커 연결을 이용한 비상 대피 유도 시스템의 설계)

  • Chung, Han-Vit;Kim, Tea-Wan;Chung, Yun-Mo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.142-152
    • /
    • 2011
  • In general, existing emergency evacuation guiding systems depend on visual techniques like emergency lights or LEDs. Actually people in the case of fire emergency condition may not obtain a range of view because of smoke from the fire. This paper introduces a technique to design an emergency guiding system using directivity sound to cope with this problem. In this case all speakers are serially connected for audio signal transmission in a serial fashion to achieve convenient speaker installation. Floyd algorithm is used to find shortest evacuation paths. Because serially connected multi-channel speakers are weak in case of disconnection, this paper uses a technique to solve the diagnostic problem. In the proposed system, a PC based on the USB protocol is used for control and observation. The system has achievements, such as increasing evacuation rate under emergency conditions, and serial transmission of audio signal for easy maintenance and low installation cost.

Intelligent evacuation systems for accidents aboard a ship (선박 재난 환경을 고려한 지능형 대피유도 시스템)

  • Kang, Moo-Bin;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.824-829
    • /
    • 2016
  • Passenger casualties in the case of ship accidents have increased because of the increase in size and complexity of current ships (such as cruise ships). Therefore, in recent years, emergency evacuation systems are receiving increased interest so as to ensure the safety of passengers. Currently, there are only basic instructions provided, such as announcements regarding the situation, alarms, and exit signs; however, no guidance toward a proper escape route has yet been provided. To solve this problem, several emergency guiding schemes have been proposed. However, these systems ignore some of the realities of ship accidents and are impractical because various risk factors are not considered. Therefore, this paper proposes an optimal route guiding system based on an $A^*$ algorithm for emergency escape during disaster situations. This system takes into account various possible risk factors. Performance evaluation using computer simulations showed that the proposed scheme is effective and leads to safe escape routes.

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

Real-time Intelligent Exit Path Indicator Using BLE Beacon Enabled Emergency Exit Sign Controller

  • Jung, Joonseok;Kwon, Jongman;Jung, Soonho;Lee, Minwoo;Mariappan, Vinayagam;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • Emergency lights and exit signs are an indispensable part of safety precautions for effective evacuation in case of emergency in public buildings. These emergency sign indicates safe escape routes and emergency doors, using an internationally recognizable sign. However visibility of those signs drops drastically in case of emergency situations like fire smoke, etc. and loss of visibility causes serious problems for safety evacuation. This paper propose a novel emergency light and exit sign built-in with Bluetooth Low Energy (BLE) Beacon to assist the emergency self-guiding evacuation using devices for crisis and emergency management to avoid panic condition inside the buildings. In this approach, the emergency light and exit sign with the BLE beacons deployed in the indoor environments and the smart devices detect their indoor positions, direction to move, and next exit sign position from beacon messages and interact with map server in the Internet / Intranet over the available LTE and/or Wi-Fi network connectivity. The map server generate an optimal emergency exit path according to the nearest emergency exit based on a novel graph generation method for less route computation for each smart device. All emergency exit path data interfaces among three system components, the emergency exit signs, map server, and smart devices, have been defined for modular implementation of our emergency evacuation system. The proposed exit sign experimental system has been deployed and evaluated in real-time building environment thoroughly and gives a good evidence that the modular design of the proposed exit sign system and a novel approach to compute emergency exit path route based on the BLE beacon message, map server, and smart devices is competitive and viable.

Development of Smart Phone Application for the Safe Operation of Inland Vessels (내수면 선박의 안전운항을 위한 스마트폰기반 어플리케이션 개발)

  • Jo, Byung-Wan;Lee, Yun-Sung;Kim, Do-Keun;Kim, Jung-Hoon;Kim, Kil-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.442-454
    • /
    • 2016
  • Recently, due to the increment of national income and the living standard of citizens, the leasure business has been dramatically expanded. Among the business, inland water activities such as cruise tour or water taxi have drawn attention from the people. As more people come for a new pleasure, the frequency and the number of services continues to rise yet the safety of people values less recently. In fact, the number of relating accidents also has risen accordingly. In order to prevent such accidents in inland waters, the vessels' real time voyage data, the advanced warning system and the emergency rescuing system are required. In this paper, we have developed navigation guiding application for safety of passengers and vessels in inland waters. Navigation guiding applications not only provide Inland Electronic Navigational Chart(IENC) and vessel information but also allows communication between traffic service center and nearby vessels in case of an emergency situation. In order to implement Navigation guiding applications, developing Inland Electronic Navigational Chart was inevitable. Therefore, IENC of Han River, has developed based on measuring the water depth using multi-beam echo sounder system.

Stunting and Gut Microbiota: A Literature Review

  • Jessy Hardjo;Nathasha Brigitta Selene
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.3
    • /
    • pp.137-145
    • /
    • 2024
  • Stunting, a condition characterized by impaired growth and development in children, remains a major public health concern worldwide. Over the past decade, emerging evidence has shed light on the potential role of gut microbiota modulation in stunting. Gut microbiota dysbiosis has been linked to impaired nutrient absorption, chronic inflammation, altered short-chain fatty acid production, and perturbed hormonal and signaling pathways, all of which may hinder optimal growth in children. This review aims to provide a comprehensive analysis of existing research exploring the bidirectional relationship between stunting and the gut microbiota. Although stunting can alter the gut microbial community, microbiota dysbiosis may exacerbate it, forming a vicious cycle that sustains the condition. The need for effective preventive and therapeutic strategies targeting the gut microbiota to combat stunting is also discussed. Nutritional interventions, probiotics, and prebiotics are among the most promising approaches to modulate the gut microbiota and potentially ameliorate stunting outcomes. Ultimately, a better understanding of the gut microbiota-stunting nexus is vital for guiding evidence-based interventions that can improve the growth and development trajectory of children worldwide, making substantial strides toward reducing the burden of stunting in vulnerable populations.

Flexible Intelligent Exit Sign Management of Cloud-Connected Buildings

  • Lee, Minwoo;Mariappan, Vinayagam;Lee, Junghoon;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • Emergencies and disasters can happen any time without any warning, and things can change and escalate very quickly, and often it is swift and decisive actions that make all the difference. It is a responsibility of the building facility management to ensure that a proven evacuation plan in place to cover various worst scenario to handled automatically inside the facility. To mapping out optimal safe escape routes is a straightforward undertaking, but does not necessarily guarantee residents the highest level of protection. The emergency evacuation navigation approach is a state-of-the-art that designed to evacuate human livings during an emergencies based on real-time decisions using live sensory data with pre-defined optimum path finding algorithm. The poor decision on causalities and guidance may apparently end the evacuation process and cannot then be remedied. This paper propose a cloud connected emergency evacuation system model to react dynamically to changes in the environment in emergency for safest emergency evacuation using IoT based emergency exit sign system. In the previous researches shows that the performance of optimal routing algorithms for evacuation purposes are more sensitive to the initial distribution of evacuees, the occupancy levels, and the type and level of emergency situations. The heuristic-based evacuees routing algorithms have a problem with the choice of certain parameters which causes evacuation process in real-time. Therefore, this paper proposes an evacuee routing algorithm that optimizes evacuation by making using high computational power of cloud servers. The proposed algorithm is evaluated via a cloud-based simulator with different "simulated casualties" are then re-routed using a Dijkstra's algorithm to obtain new safe emergency evacuation paths against guiding evacuees with a predetermined routing algorithm for them to emergency exits. The performance of proposed approach can be iterated as long as corrective action is still possible and give safe evacuation paths and dynamically configure the emergency exit signs to react for real-time instantaneous safe evacuation guidance.

Implementation of Public Address System Using Anchor Technology

  • Seungwon Lee;Soonchul Kwon;Seunghyun Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • A public address (PA) system installed in a building is a system that delivers alerts, announcements, instructions, etc. in an emergency or disaster situation. As for the products used in PA systems, with the development of information and communication technology, PA products with various functions have been introduced to the market. PA systems recently launched in the market may be connected through a single network to enable efficient management and operation, or use voice recognition technology to deliver quick information in case of an emergency. In addition, a system capable of locating a user inside a building using a location-based service and guiding or responding to a safe area in the event of an emergency is being launched on the market. However, the new PA systems currently on the market add some functions to the existing PA system configuration to make system operation more convenient, but they do not change the complex PA system configuration to reduce facility costs, maintenance, and management costs. In this paper, we propose a novel PA system configuration for buildings using audio networks and control hierarchy over peer-to-peer (Anchor) technology based on audio over IP (AoIP), which simplifies the complex PA system configuration and enables convenient operation and management. As a result of the study, through the emergency signal processing algorithm, fire broadcasting was made possible according to the detection of the existence of a fire signal in the Anchor system. In addition, the control device of the PA system was replaced with software to reduce the equipment installation cost, and the PA system configuration was simplified. In the future, it is expected that the PA system using Anchor technology will become the standard for PA facilities.

Relationship of Mean Arterial Pressure with the Adverse Outcomes in Adult Blunt Trauma Patients: Cross-sectional Study (성인둔상환자에서 평균동맥압과 위해사건발생의 관련성:단면 조사 연구)

  • Cha, Seung Yong;Kim, Yong Hwan;Hong, Chong Kun;Lee, Jun Ho;Cho, Kwang Won;Hwang, Seong Youn;Lee, Kyoung Yul;Lee, Younghwan;Choi, Seong Hee
    • Journal of Trauma and Injury
    • /
    • v.26 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • Purpose: Non-invasive blood pressure measurement is widely used as a pre-hospital triage tool for blunt trauma patients. However, scant data exits for using the mean arterial pressure (MAP), compared to the systolic blood pressure, as a guiding index. The aim of this study was to determine the association between adverse outcomes and mean arterial pressure (MAP) and to exhibit the therapeutic range of the MAP in adult blunt trauma patients. Methods: The electronic medical records for all trauma patients in a single hospital from January 2010 to September 2012 were retrospectively reviewed. Patients below 17 years of age, patients with penetrating injuries, and patients with serious head trauma (injuries containing any skull fractures or any intracranial hemorrhages) were excluded. Adverse outcomes were defined as one of the following: death in the Emergency Department (ED), admission via operating theater, admission to the intensive care unit, transfer to another hospital for emergency surgery, or discharge as hopeless. Results: There were 14,537 patients who met entry criteria. Adverse outcomes occurred for MAPs in range from 90 to 120 mmHg. Adverse outcomes were found, after adjusting for confounding variables, to occur increasingly as the MAP declined below 90 mmHg or rose above 120 mmHg. Conclusion: Not only lower but also higher mean arterial pressure is associated with increased adverse outcomes in adult blunt trauma patients. Thus, patients with a MAP above 120 mmHg should be considered as a special group requiring higher medical attention, just as those with a MAP below 90 mmHg are.

A Study on the Development of Intelligent Guiding Exit Sign System (지능형 피난유도 시스템 개발에 관한 연구)

  • Kim, Yoo-Shik;Sug, Dong-Sub
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.131-134
    • /
    • 2006
  • As modern buildings grow to become diversified, toxic gases and smoke coupled with characteristics of space during a fire increase the risk of large-scaled disaster. It is now urgent to take measures for evacuation and escape directly linked to personal damage. Existing fixed one-way emergency exit light is not enough for efficient evacuation and rescue. Therefore, to ensure quicker escape and evacuation during a fire, two-way radio data system should be devised, which linked with fire detector, helps people in danger to escape quickly and is able to control by a central control system, and the system was found to enhance the efficiency of escape and contribute to safer escape.