• 제목/요약/키워드: Embryonic developmental

검색결과 510건 처리시간 0.027초

The antioxidant capacity of Mito-TEMPO improves the preimplantation development and viability of vitrified-warmed blastocysts through the stabilization of F-actin morphological aspects in bovine embryos

  • Jae-Hoon Jeong;Hyo-Jin Park;Seul-Gi Yang;Deog-Bon Koo
    • 한국동물생명공학회지
    • /
    • 제37권4호
    • /
    • pp.231-238
    • /
    • 2022
  • Reactive oxygen species (ROS) production and F-actin cytoskeleton dynamics play important roles in the survival rate of blastocysts after the vitrified-warming process. However, the protective effects of Mito-TEMPO against cryo-injury and viability through F-actin aggregation and mitochondrial-specific ROS production in vitrificated-warmed bovine embryos have not been investigated. The aims of the present study were to: (1) determine the effects of Mito-TEMPO on embryonic developmental competence and quality by F-actin stabilization during in vitro culturing (IVC), and (2) confirm the effects of Mito-TEMPO through F-actin structure on the cryotolerance of vitrification-warming in Mito-TEMPO exposed in vitro production (IVP) of bovine blastocysts. Bovine zygotes were cultured with 0.1 μM Mito-TEMPO treatment for 2 days of IVC. Mito-TEMPO (0.1 μM) exposed bovine embryos slightly improved in blastocyst developmental rates compared to the non-treated group. Moreover, the viability of vitrified-warmed blastocysts from Mito-TEMPO treated embryos significantly increased (p < 0.05, non-treated group: 66.7 ± 3.2% vs Mito-TEMPO treated group: 79.2 ± 5.9%; re-expanded at 24 hours). Mito-TEMPO exposed embryos strengthened the F-actin structure and arrangement in the blastocyst after vitrification-warming. Furthermore, the addition of Mito-TEMPO into the IVC medium enhanced embryonic survival and quality through F-actin stabilization after the vitrification-warming procedure. Overall, our results suggest that supplementing the culture with 0.1 μM Mito-TEMPO improves the embryonic quality and cryo-survival of IVP bovine blastocysts.

Expression of CyI Cytoplasmic Actin Genes in Sea Urchin Development

  • Hahn, Jang-Hee;Raff, Rudolf A.
    • BMB Reports
    • /
    • 제29권5호
    • /
    • pp.474-480
    • /
    • 1996
  • We present a study of evolutionary changes in expression of actin genes among closely related sea urchin species that exhibit different modes of early development. For this purpose, polyclonal antisera raised against peptides from the carboxyl terminus of the HeCyI cytoskeletal actin of Heliocidaris erythrogramma were used. H. erythrogramma is a direct developing sea urchin that proceeds from embryonic to adult stages without an intervening feeding larval stage. Expression patterns of the CyI actin isoform were compared with those of Heliocidaris tuberculata and to a related sea urchin Strongylocentrotus purpuratus, which both produce a feeding pluteus larval stage. The CyI actin of all three species is expressed in the same cell types. However, its expression patterns have been changed with reorganization of early cell lineage differentiation, which is apparent among the three species. Thus. evolutionary changes in CyI actin gene expression patterns are correlated with not only phylogenetic relationship, but developmental mode. The implication of this observation is that evolutionary changes in expression patterns of histospecific genes may underlie the emergence of novel developmental processes.

  • PDF

Establishment of Porcine Embryonic Stem Cells by Aggregation of Parthenogenetic Embryos

  • Zhang, Jin-Yu;Diao, Yun Fei;Oqani, Reza K.;Wo, Je-Sok;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.123-129
    • /
    • 2011
  • The pig has been considered to serve as an appropriate model of human disease. Therefore, establishment of porcine embryonic stem cell lines is important. The purpose of the present study was to further work in this direction. We produced porcine parthenogenetic embryos, and separately aggregated two of each of two-cell ($2{\times}2$), four-cell ($2{\times}4$), and eight-cell ($2{\times}8$) embryos derived by parthenogenesis. After culture for 4 days, the developmental ability of the aggregates and total blastocyst cell numbers were evaluated. The percentage of blastocysts was significantly higher in both $2{\times}4$- and $2{\times}8$-aggregated embryos ($58.3{\pm}1.9%$ and $37.2{\pm}2.8%$, respectively) than in the control or $2{\times}2$-aggregated embryos ($23.6{\pm}1.1%$ and $12.5{\pm}2.4%$, respectively). Total blastocyst cell numbers were increased in the $2{\times}4$- and $2{\times}8$-aggregated embryos (by $44{\pm}3.0%$ and $45{\pm}3.3%$, respectively) compared with those of control or $2{\times}2$-aggregated embryos ($30.5{\pm}2.1%$ and $30.7{\pm}2.6%$, respectively; p<0.05). The levels of mRNA encoding Oct-4 were higher in both the $2{\times}4$- and $2{\times}8$-aggregated embryos than in the control. When blastocysts derived from $2{\times}4$- aggregated embryos or intact normal embryos were cultured on mouse embryonic fibroblast feeder cells to obtain porcine stem cells, blastocysts from aggregated embryos formed colonies that were better in shape compared with those derived from intact blastocysts. Together, the data show that aggregation of porcine embryos not only improves blastocyst quality but also serves as an efficient procedure by which porcine embryonic stem cells can become established.

Epidermal Growth Factor (EGF)와 anti-EGF가 생쥐배아의 발생에 미치는 영향 (Effect of Epidermal Growth Factor (EGF) and anti-EGF on Early Embryonic Development in Mice)

  • 변혜경;이호준
    • 한국가축번식학회지
    • /
    • 제21권1호
    • /
    • pp.61-69
    • /
    • 1997
  • 본 연구는 EGF와 anti-EGF가 초기 생쥐배아의 발생 및 부화에 미치는 영향을 알아보고자 실행되었다. 초기 2세포기부터 상실배까지의 배아를 EGF와 anti-EGF를 각각 처리한 Ham's F10 배양액에서 배양하여 그 발생률과 부화율을 대조군과 비교하였다. EGF 처리시 배양시간에 따른 발생률은 증진되었으나 통계학적 유의성은 없었다. EGF 처리군에서의 부화율(57.5, 62.5, 65.0, 62.5%)은 대조군(35%)에 비하여 유의하게 (p<0.01) 높았다. Anti-EGF 처리시 각 발생시기별 1:1000 실험군의 발생률은 대조군과 차이가 없었다. 그러나, 1:100 실험군의 경우, 2∼4세포기의 배아는 모두 4∼8세포기에서 정지되었고, 8세포기와 상실배의 포배형성은 48시간 이상 지연되었으며 부화 역시 대조군에 비해 억제되었다(8세포기; 2%, 44%, 상실배; 6.2%, 58.3%). 이 실험에서, EGF는 생쥐 배아의 포배형성과 부화를 증진시키는 반면, anti-EGF는 이를 억제하였다. Anti-EGF 처리시 나타나는 발생정지 현상은 anti-EGF가 배아에서 만들어지는 EGF와 반응하여 EGF의 작용을 억제시키기 때문으로 사료된다. 그러므로 EGF는 paracrine mode로서 뿐만 아니라 antocrine mode로서 생쥐 초기배아의 발생에 중요한 인자로 작용함을 알 수 있었다.

  • PDF

IVF, ICSI 또는 TESE-ICSI에서 수정을 유도한 난자의 배아 발생능력 및 임신율 (Embryonic Developmental Capacity and Pregnancy Rates of Fertilized Oocytes in IVF, ICSI and TESE-ICSI Cycles)

  • 박기상;박윤규;송해범;이택후;전상식
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제31권3호
    • /
    • pp.169-176
    • /
    • 2004
  • Objective: This study was performed to evaluate and compare the embryonic developmental capacity and pregnancy rates in conventional in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) with ejaculated sperm or testicular sperm cycles. Materials and Methods: Fertilization was examined in the following morning after IVF (group I), ICSI (group II) or TESE-ICSI cycles (group III). Fertilized oocytes were co-cultured with Vero cells until embryo transfer (ET). On day 2 and $5{\sim}7$, grades of embryos (<4- or $\geq$4-cell) and blastocysts (BG1, 2, 3 or early) were evaluated. Clinical pregnancy rate was determined by detecting G-sac with transvaginal ultrasonogram. We analyzed the results by $X^2$ and Student's t-test and considered statistically significant when P value was less than 0.05. Results: Fertilization rate was significantly higher (p<0.05) in group I ($79.0{\pm}21.2%$) than in group II and III ($56.8{\pm}21.6%$ and $36.7{\pm}25.3%$). Cleavage and blastulation rate of group I ($95.8{\pm}13.8%$ and $59.5{\pm}25.3%$) were significantly higher (p<0.05) than those of group III ($83.4{\pm}18.6%$ and $40.4{\pm}36.5%$). Clinical pregnancy rate was significantly higher (p<0.05) in group I and II (40.7% and 41.7%) than that in group III (12.5%). No differences were found in the rates of multiple pregnancy and abortion among three groups. Embryonic implantation rate was higher in group I ($15.1{\pm}20.2%$, p<0.05) and II ($14.7{\pm}20.6%$, NS) than that in group III ($5.1{\pm}15.6%$). However, embryonic implantation rate was increased in ET with blastocyst(s) among three groups. Conclusions: Fertilized oocytes obtained from TESE-ICSI were harder to be successfully cultured to blastocyst stage for 5$\sim$7 days than that from IVF cycles. However, all blastocyst(s) ET increased the embryonic implantation rate equally in IVF, ICSI and TESE-ICSI cycles.

The Question of Abnormalities in Mouse Clones and ntES Cells

  • Wakayama, Teruhiko
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.7-8
    • /
    • 2003
  • Since it was first reported in 1997, somatic cell cloning has been demonstrated in several other mammalian species. On the mouse, it can be cloned from embryonic stem (ES) cells, fetus-derived cells, and adult-derived cells, both male and female. While cloning efficiencies range from 0 to 20%, rates of just 1-2% are typical (i.e. one or two live offspring per one hundred initial embryos). Recently, abnormalities in mice cloned from somatic cells have been reported, such as abnormal gene expression in embryo (Boiani et al., 2001, Bortvin et al., 2003), abnormal placenta (Wakayama and Yanagimachi 1999), obesity (Tamashiro et ai, 2000, 2002) or early death (Ogonuki et al., 2002). Such abnormalities notwithstanding, success in generating cloned offspring has opened new avenues of investigation and provides a valuable tool that basic research scientists have employed to study complex processes such as genomic reprogramming, imprinting and embryonic development. On the other hand, mouse ES cell lines can also be generated from adult somatic cells via nuclear transfer. These 'ntES cells' are capable of differentiation into an extensive variety of cell types in vitro, as well assperm and oocytes in vivo. Interestingly, the establish rate of ntES cell line from cloned blastocyst is much higher than the success rate of cloned mouse. It is also possible to make cloned mice from ntES cell nuclei as donor, but this serial nuclear transfer method could not improved the cloning efficiency. Might be ntES cell has both character between ES cell and somatic cell. A number of potential agricultural and clinical applications are also are being explored, including the reproductive cloning of farm animals and therapeutic cloning for human cell, tissue, and organ replacement. This talk seeks to describe both the relationship between nucleus donor cell type and cloning success rate, and methods for establishing ntES cell lines. (중략)

  • PDF

Studies of In Vitro Embryo Culture of Guppy (Poecilia reticulata)

  • Liu, LiLi;Lee, Ki-Young
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권3호
    • /
    • pp.139-143
    • /
    • 2014
  • Different with other fishes, the guppies (Poecilia reticulata) is ovoviviparity, which retain their fertilized eggs within the follicle throughout gestation. The synchronously growing diplotene oocytes store nutrients in droplets and yolk, before their maturation and fertilization. The lecithotrophic strategy of development entails the provisioning of embryos with resources from the maternal yolk deposit rather than from a placenta, it allows the extracorporeal culture of guppy embryo. Studies on their early development of live bearers like the guppy including lineage tracing and genetic manipulations, have been limited. Therefore, to optimize conditions of embryo in vitro culture, explanted embryos from pregnant females were incubated in embryo medium (L-15 medium, supplemented with 5, 10, 15, 20% fetal bovine serum, respectively). We investigated whether the contents of FBS in vitro culture medium impact the development of embryos, and whether they would hatch in vitro. Our study found that in 5% of FBS of the medium, although embryos developed significantly slower in vitro than in the ovary, it was impossible to exactly quantify the developmental delay in culture, due to the obvious spread in developmental stage within each batch of eggs, and embryos can only be maintained until the early-eyed. And although in culture with 20% FBS the embryos can sustain rapid development of early stage, but cannot be cultured for the entire period of their embryonic development and ultimately died. In the medium with 10% and 15% FBS, the embryos seems well developed, even some can continue to grow after follicle ruptures until it can be fed. We also observed that embryonic in these two culture conditions were significantly different in development speed, in 15% it is faster than 10%. But 10% FBS appears to be more optimizing condition than 15% one on development process of embryos and survival rate to larvae stage.

Effect of Heavy Metals on Embryonic Development in the Mussel, Mytilus galloprovincialis

  • Sung, Chan-Gyoung;Kim, Gi-Beum;Lee, Chang-Hoon
    • 한국패류학회지
    • /
    • 제22권2호
    • /
    • pp.167-173
    • /
    • 2006
  • The embryos of marine bivalves have been commonly used in bioassays for quality assessments of marine environments. Although several standard protocols for the developmental bioassay of bivalves have been proposed, only a few trials for application of these protocols in environmental assessments or for the development of a new protocol with Korean species have been conducted. As such, there is a strong need to establish standard bioassay protocols with bivalves commonly found in Korean waters. To determine the sensitivity of Mytilus galloprovincialis to establish a standard bioassay, their fertilized eggs were exposed to six metals (Ag, Cd, Cr, Cu, Ni, and Zn). The order of biological impact was Ag > Cu > Ni > Zn > Cr > Cd and their lowest observed effective concentration were 5, 16.4, 25.4, 142, 187 and 1,500${\mu}g/l$, respectively. The proportion of normal larvae appeared to decrease linearly with the logarithm of each toxicant concentration within the tested range. The average values of median effective concentrations $(EC_{50})$ from the triplicate experiments for Ag, Cd, Cr, Cu, Ni, and Zn were 6.8, 1,797, 786, 16.6, 68.1, and 139.2${\mu}g/l$, respectively. There was a more than 100-fold difference in $EC_{50}$ values of Cu and Cd. The value of $EC_{50}$ or median lethal concentration of Cu was within the range observed for other bivalve developmental bioassays. The overall sensitivity of M. galloprovincialis in the present developmental bioassay was also similar to that of other marine organisms commonly used in aquatic bioassays (e.g. sea urchins, oysters). Hence, the bioassay using the embryo of M. galloprovincialis is considered to be a useful tool to monitor and evaluate the quality of marine aquatic environments.

  • PDF

Anti-oxidative effects of exogenous ganglioside GD1a and GT1b on embryonic developmental competence in pigs

  • Kim, Jin-Woo;Park, Hyo-Jin;Yang, Seul-Gi;Koo, Deog-Bon
    • 한국동물생명공학회지
    • /
    • 제35권4호
    • /
    • pp.347-356
    • /
    • 2020
  • Gangliosides are glycolipids in which oligosaccharide is combined with sialic acids. Our previous studies have suggested an interplay between ganglioside GD1a/GT1b and meiotic maturation capacity in porcine oocyte maturation. Furthermore, ganglioside GD1a and GT1b are known for its antioxidant activity, but it is still unclear whether possible antioxidant role of GD1a and GT1b is involved in porcine embryos development competence during in vitro culture (IVC). Here, the effects of ganglioside GD1a and GT1b on the embryonic developmental competence during in vitro culture of porcine were investigated. The effects of ganglioside GD1a and GT1b on the expression of ST3GAL2 were confirmed during embryos development (2-cell, 4-cell, 8-cell and blastocyst) using immunofluorescent staining (IF). As a result, the fluorescent expression of ST3GAl2 was higher in embryos at 4-8 cells stage than blastocysts. Blastocyst development rate significantly increased in only 0.1 μM GD1a and GT1b treated groups compared with control group. To investigate the cellular apoptosis, we analyzed TUNEL assay. In case of only 0.1 μM GD1a and GT1b treated groups, the total number of cells in blastocyst compared with control group, but there was no significant difference in the rate of apoptotic cells. We identified the intracellular ROS levels using DCF-DA staining. According to the result, ROS production significantly decreased in blastocysts derived from the 0.1 μM GD1a and GT1b treated groups. These results suggest that ganglioside GD1a and GT1b improve the developmental competence of porcine embryos via reduction of intracellular ROS during preimplantation stage.

In vitro maturation on a soft agarose matrix enhances the developmental ability of pig oocytes derived from small antral follicles

  • Park, Ji Eun;Lee, Seung Tae;Lee, Geun-Shik;Lee, Eunsong
    • 한국동물생명공학회지
    • /
    • 제37권1호
    • /
    • pp.34-41
    • /
    • 2022
  • In vivo oocytes grow and mature in ovarian follicles whereas oocytes are matured in vitro in plastic culture dishes with a hard surface. In vivo oocytes show a superior developmental ability to in vitro counterparts, indicating suboptimal environments of in vitro culture. This study aimed to evaluate the influence of an agarose matrix as a culture substrate during in vitro maturation (IVM) on the development of pig oocytes derived from small antral follicles (SAFs). Cumulus-oocyte complexes (COCs) retrieved from SAFs were grown in a plastic culture dish without an agarose matrix and then cultured for maturation in a plastic dish coated without (control) or with a 1% or 2% (w/v) agarose hydrogel. Then, the effect of the soft agarose matrix on oocyte maturation and embryonic development was assessed by analyzing intra-oocyte contents of glutathione (GSH) and reactive oxygen species (ROS), expression of VEGFA, HIF1A, and PFKP genes, and blastocyst formation after parthenogenesis. IVM of pig COCs on a 1% (w/v) agarose matrix showed a significantly higher blastocyst formation, intra-oocyte GSH contents, and transcript abundance of VEGFA. Moreover, a significantly lower intra-oocyte ROS content was detected in oocytes matured on the 1% and 2% (w/v) agarose matrices than in control. Our results demonstrated that IVM of SAFs-derived pig oocytes on a soft agarose matrix enhanced developmental ability by improving the cytoplasmic maturation of oocytes through redox balancing and regulation of gene expression.