• Title/Summary/Keyword: Embedment depth

Search Result 105, Processing Time 0.018 seconds

Analytical investigation on moment-rotation relationship of through-tenon joints with looseness in ancient timber buildings

  • Xue, Jianyang;Qi, Liangjie;Dong, Jinshuang;Xu, Dan
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.241-248
    • /
    • 2018
  • To study the mechanical properties of joints in ancient timber buildings in depth, the force mechanism of the through-tenon joints was analyzed, also the theoretical formulas of the moment-rotation angles of the joints with different loosening degrees were deduced. To validate the rationality of the theoretical calculation formulas, six joint models with 1/3.2 scale ratio, including one intact joint and five loosening joints, were fabricated and tested under cyclic loading. The specimens underwent the elastic stage, the plastic stage and the destructive stage, respectively. At the same time, the moment-rotation backbone curves of the tenon joints with different looseness were obtained, and the theoretical calculation results were validated when compared with the experimental results. The results show that the rotational moment and the initial rotational stiffness of the tenon joints increase gradually with the increase of the friction coefficient. The increase of the tenon section height can effectively improve the bearing capacity of the through-tenon joints. As the friction coefficient of the wood and the insertion length of the tension increase, the embedment length goes up, whereas it decreases with the increase of section height. With the increase of the looseness, the bearing capacity of the joint is reduced gradually.

The use of neural networks for the prediction of the settlement of pad footings on cohesionless soils based on standard penetration test

  • Erzin, Yusuf;Gul, T. Oktay
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.541-564
    • /
    • 2013
  • In this study, artificial neural networks (ANNs) were used to predict the settlement of pad footings on cohesionless soils based on standard penetration test. To achieve this, a computer programme was developed to calculate the settlement of pad footings from five traditional methods. The footing geometry (length and width), the footing embedment depth, $D_f$, the bulk unit weight, ${\gamma}$, of the cohesionless soil, the footing applied pressure, Q, and corrected standard penetration test, $N_{cor}$, varied during the settlement analyses and the settlement value of each footing was calculated for each method. Then, an ANN model was developed for each traditional method to predict the settlement by using the results of the analyses. The settlement values predicted from the ANN model were compared with the settlement values calculated from the traditional method for each method. The predicted values were found to be quite close to the calculated values. It has been demonstrated that the ANN models developed can be used as an accurate and quick tool at the preliminary designing stage of pad footings on cohesionless soils without a need to perform any manual work such as using tables or charts. Sensitivity analyses were also performed to examine the relative importance of the factors affecting settlement prediction. According to the analyses, for each traditional method, $N_{cor}$ is found to be the most important parameter while ${\gamma}$ is found to be the least important parameter.

Centriofuge Model Tests on Excavation Depth-Time-Displacement of Unpropped Diaphragm Walls (Diaphragm Wall에서 굴착깊이-시간-변위에 관한 원심모형실험)

  • Lee, Cheo-Keun;Aan, Kwang-Kuk;Heo, Yol
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.179-191
    • /
    • 2000
  • 본 연구에서는 화강토 지반상의 자립식 diaphragm wall의 거동을 연구하기 위하여 벽체의 근입깊이비, 지하수위 및 굴착조건(연속 및 단계굴착)을 변화시키면서 원심모형시럼을 수행하였다. 원심모형실험시 지반굴착은 흙과 동일한 밀도로 혼합된 zine chloride 용액이 배수되도록 밸브를 조작하여 실시하였으며, 굴착에 의해 발생되는 지반의 변형괴 벽체의 변위 및 휨모멘트를 시간경과에 따라 측정하였다. 실험결과, 벽체의 근입깊이비가 증가함에 따라 벽체의 휨모멘트는 증가하는 반면, 굴착과정동안 배면측에서의 간극수압 감소속도는 감소하였다. 최종 굴착단계에서 굴착후 시간경과에 따른 침하량은 굴착과정중의 침하?에 비해 5~7% 정도를 나타내었다. 최대표면침하량과 벽체변위를 굴착깊이로 정규화한 결과 최대 침하량은 벽체 변위량의 0.8~1.2배9평균0.91배)사이에 분포하였다. 굴착깊이로 전규화한 벽체변위와 근입깊이와의 관계는 지수함수식으로 제안하였다. 파괴면은 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었으며, 퐈괴면의 각도는 66~72.5$^{\circ}$정도로 이론적인 파괴면의 각도보다 크게 평가되었다.

  • PDF

Estimation of ultimate bearing capacity of shallow foundations resting on cohesionless soils using a new hybrid M5'-GP model

  • Khorrami, Rouhollah;Derakhshani, Ali
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.127-139
    • /
    • 2019
  • Available methods to determine the ultimate bearing capacity of shallow foundations may not be accurate enough owing to the complicated failure mechanism and diversity of the underlying soils. Accordingly, applying new methods of artificial intelligence can improve the prediction of the ultimate bearing capacity. The M5' model tree and the genetic programming are two robust artificial intelligence methods used for prediction purposes. The model tree is able to categorize the data and present linear models while genetic programming can give nonlinear models. In this study, a combination of these methods, called the M5'-GP approach, is employed to predict the ultimate bearing capacity of the shallow foundations, so that the advantages of both methods are exploited, simultaneously. Factors governing the bearing capacity of the shallow foundations, including width of the foundation (B), embedment depth of the foundation (D), length of the foundation (L), effective unit weight of the soil (${\gamma}$) and internal friction angle of the soil (${\varphi}$) are considered for modeling. To develop the new model, experimental data of large and small-scale tests were collected from the literature. Evaluation of the new model by statistical indices reveals its better performance in contrast to both traditional and recent approaches. Moreover, sensitivity analysis of the proposed model indicates the significance of various predictors. Additionally, it is inferred that the new model compares favorably with different models presented by various researchers based on a comprehensive ranking system.

Application of numerical simulation for the analysis and interpretation of pile-anchor system failure

  • Saleem, Masood
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.689-707
    • /
    • 2015
  • Progressive increase in population causing land scarcity, which is forcing construction industry to build multistory buildings having underground basements. Normally, basements are constructed for parking facility. This research work evaluates important factors which have caused the collapse of pile-anchor system at under construction five star hotel. 21 m deep excavation is carried out, to have five basements, after installation of 600 mm diameter cast in-situ contiguous concrete piles at plot periphery. To retain piles and backfill, soil anchors are installed as pit excavation is proceeded. Before collapse, anchors are designed by federal highway administration procedure and four anchor rows are installed with three strands per anchor in first row and four in remaining. However, after collapse, system is modeled and analyzed in plaxis using mohr-coulomb method. It is investigated that in-appropriate evaluation of soil properties, additional surcharge loads, lesser number of strands per anchor, shorter grouted body length and shorter pile embedment depth caused large deformations to occur which governed the collapse of east side pile wall. To resume work, old anchors are assumed to be standing at one factor of safety and then system is analyzed using finite element approach. Finally, it is concluded to use four strands per anchor in first new row and five strands in remaining three with increase in grouted and un-grouted body lengths.

Effect of a Sunken Mat Foundation on the Horizontal Design Spectrum of a Structure (깊게 파인 온통기초가 구조물의 수평방향 설계스펙트럼에 미치는 영향)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.169-177
    • /
    • 2021
  • In this paper, horizontal seismic responses of a structure built on a sunken mat foundation were compared with those built on a solid embedded mat foundation to investigate the effect of a sunken mat foundation on the horizontal response of a structure. Seismic analyses of a structure laid on the embedded mat foundation were performed by utilizing a pseudo-3D finite element software of P3DASS. Three bedrock earthquake records downloaded from the Pacific Earthquake Engineering Research Center database were scaled to reproduce weak-moderate earthquakes. Weak, medium, and stiff soil layers were considered for the seismic analyses of the structure-foundation-soil system. Parametric studies were performed for foundation radius, foundation embedment depth, and shear wave velocity of a soil layer to investigate their effect on the seismic response spectrum. The study result showed that the design spectrum of a structure built on a sunken mat foundation was similar to that with a solid embedded mat foundation showing a slight difference due to almost the same seismic base motion beneath both embedded foundations.

Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay

  • Zou, Xinjun;Wang, Yikang;Zhou, Mi;Zhang, Xihong
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.585-598
    • /
    • 2022
  • The monopile-friction wheel hybrid foundation is an innovative solution for offshore structures which are mainly subjected to large lateral eccentric load induced by winds, waves, and currents during their service life. This paper presents an extensive numerical analysis to investigate the lateral load and moment bearing performances of hybrid foundation, considering various potential influencing factors in sand-overlaying-clay soil deposits, with the complex lateral loads being simplified into a resultant lateral load acting at a certain height above the mudline. Finite element models are generated and validated against experimental data where very good agreements are obtained. The failure mechanisms of hybrid foundations under lateral loading are illustrated to demonstrate the effect of the friction wheel in the hybrid system. Parametric study shows that the load bearing performances of the hybrid foundation is significantly dependent of wheel diameter, pile embedment depth, internal friction angle of sand, loading eccentricity (distance from the load application point to the ground level), and the thickness of upper sandy layer. Simplified empirical formulae is proposed based on the numerical results to predict the corresponding lateral load and moment bearing capacities of the hybrid foundation for design application.

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.

The behaviour of a strip footing resting on geosynthetics-reinforced slopes

  • Hamed Yazdani;Mehdi Ashtiani
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.623-636
    • /
    • 2023
  • This study utilized small-scale physical model tests to investigate the impact of different types of geosynthetics, including geocell, planar geotextile, and wraparound geotextile, on the behaviour of strip footings placed on 0.8 m thick soil fills and backfills with a slope angle of 70°. Bearing capacity and settlement of the footing and failure mechanisms are discussed and evaluated. The results revealed that the bearing capacity of footings situated on both unreinforced and reinforced slopes increased with a greater embedment depth of the footing. For settlement ratios below 4%, the geocell reinforcement exhibited significantly higher stiffness, carrying greater loads and experiencing less settlement compared to the planar and wraparound geotextile reinforcements. However, the performance of geocell reinforcement was influenced by the number and length of the geocell layers. Increasing the geocell back length ratio from 0.44 to 0.84 significantly improved the bearing capacity of the footing located at the crest of the reinforced slope. Adequate reinforcement length, particularly for geocell, enhanced the bearing pressure of the footing and increased the stiffness of the slope, resulting in reduced deflections. Increasing the length of reinforcement also led to improved performance of the footing located on wraparound geotextile reinforced slopes. In all reinforcement cases, reducing the vertical spacing between reinforcement layers from 100 mm to 75 mm allowed the slope to withstand much greater loads.

Elastic settlements of identical angular footings in close proximity

  • R. Sarvesha;V. Srinivasan;Anjan Patelb
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.193-207
    • /
    • 2023
  • In general, the numerous classical approaches available in the literature can anticipate the settlement of shallow foundations. As long as the footings are not in close proximity to other subsurface buildings, the findings achieved using these methods are legitimate and acceptable. However, due to increased urbanisation and land scarcity, footings are frequently built close together. As a result, these footings' settlement behaviour differs from those of isolated footings. A simpler approach for assessing the settlement behaviour of two square or rectangular footings placed in close proximity is presented in this work. A Parametric study has been carried out to examine the interference effect on the settlement of these footings placed in close vicinity on the surface of a homogeneous, isotropic and elastic soil medium. The interaction factors are examined by varying the different aspect ratios (L/B), clear spacing ratio (S/B) and intensity of loading on the right footing with respect to the left footing. Further, variation of the settlement ratio (δ/B) with respect to embedment depth ratio Df/B is examined. For square and rectangular footings, the interference settlement profile is also investigated by varying the clear spacing ratio (S/B) and the degree of loading. The results were compared to 3D finite element analysis and experimental data that were available.