• Title/Summary/Keyword: Embedment depth

Search Result 103, Processing Time 0.025 seconds

Pseudostatic analysis of bearing capacity of embedded strip footings in rock masses using the upper bound method

  • Saeed Shamloo;Meysam Imani
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.381-396
    • /
    • 2023
  • The present paper evaluates seismic bearing capacity of rock masses subjected to loads of strip footings using the upper bound method. A general formula was proposed to evaluate the seismic bearing capacity considering both the horizontal and vertical accelerations of the earthquake and the effects of footing embedment depth simultaneously. Modified Hoek-Brown failure criterion was employed for the rock mass. Some comparisons were made with the available solutions and the finite element numerical models to show the accuracy of the developed upper bound formulations. The obtained results show significant improvement compared to the other available solutions. By increasing the horizontal earthquake acceleration from 0.1 to 0.3, the bearing capacity was reduced by up to 39%, while the effect of the vertical earthquake acceleration depends on its direction. An upward acceleration in the range of zero to 0.2 results in an increase in the bearing capacity by up to 24%, while the downward earthquake acceleration has an adverse effect. Also, by increasing the embedment depth of the footing from zero to 5 times the footing width, the value of seismic bearing capacity was raised about 86%. The obtained results were presented as design tables for use in practical applications.

A simplified framework for estimation of deformation pattern in deep excavations

  • Abdollah Tabaroei;Reza Jamshidi Chenari
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • To stabilize the excavations in urban area, soil anchorage is among the very common methods in geotechnical engineering. A more efficient deformation analysis can potentially lead to cost-effective and safer designs. To this end, a total of 116 three-dimensional (3D) finite element (FE) models of a deep excavation supported by tie-back wall system were analyzed in this study. An initial validation was conducted through examination of the results against the Texas A&M excavation cases. After the validation step, an extensive parametric study was carried out to cover significant design parameters of tie-back wall system in deep excavations. The numerical results indicated that the maximum horizontal displacement values of the wall (δhm) and maximum surface settlement (δvm) increase by an increase in the value of ground anchors inclination relative to the horizon. Additionally, a change in the wall embedment depth was found to be contributing more to δvm than to δhm. Based on the 3D FE analysis results, two simple equations are proposed to estimate excavation deformations for different scenarios in which the geometric configuration parameters are taken into account. The model proposed in this study can help the engineers to have a better understanding of the behavior of such systems.

Bearing Capacity of Strip Foundation on Geogrid-Reinforced Sand with Embedment Depth (기초의 근입깊이를 고려한 지오그리드 보강 사질토지반의 지지력)

  • ;Shin, Dong-Hoon;Oh, Young-In
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.57-65
    • /
    • 2000
  • 다층의 지오그리드로 보강된 사질토 지반에 축조된 줄기초의 극한 지지력을 결정하기 위하여 실내모형실험을 실시하였다. 한가지 종류의 사진토와 지오그리드를 사용하였으며, 시험은 기초의 근입깊이(Df)가 없을 때와 근입깊이(Df)가 있을 때로 분류하여 시행되었다. 기초의 근입깊이(Df)는 기초의 폭(B)보다 작도록 제한되었다. 시험결과, 주어진 보강깊이의 두께에 대하여 지지력비(BCR)는 기초의 근입깊이(Df)가 0보다 클 때 증가하였다.

  • PDF

Experimental investigation of the uplift capacity of group anchor plates embedded in sand

  • Emirler, Buse;Tolun, Mustafa;Laman, Mustafa
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.691-711
    • /
    • 2016
  • In this study, the uplift capacity of anchor plates embedded in sand was investigated by conducting model tests. Square shaped anchors were used in the tests and parameters such as relative density of sand, embedment ratio (H/B), spacing ratio between anchors (S/B) and anchor configuration affecting the uplift capacity were investigated. Breakout factor and group efficiency which are dimensionless parameters were used to show the results. A series of finite element analyses and analytical solutions were additionally performed to ascertain the validity of the findings from the laboratory model tests and to supplement the results of the model tests. It can be concluded that the embedment depth in dense sand soil condition is the most important parameter with respect to the other parameters as to influencing the uplift capacity of group anchors.

Numerical Analysis of Block Type Quay Wall with Piles for Restraining Horizontal Deformation (말뚝 결합 블록식 안벽의 수평변위 억제에 대한 수치해석 연구)

  • Soon-Goo Kwon;Won-Hyo Lee;Tae-Hyung Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.155-163
    • /
    • 2023
  • A two-dimensional numerical analysis was performed on the depth of pile embedment, the magnitude of the residual water level, and the condition of the presence or absence of cap concrete to understand the behavior of the block-type quay wall with piles. The results showed the control effect of the lateral displacement of the quay wall depending on the embedment of the pile. When the piles were not embedded, the lateral displacement of the quay wall increased proportionally as the residual water level difference increased. In contrast, when the piles were embedded into the ground, the control of the lateral displacement of the quay wall was greatly exerted even if the residual water level difference increased. There was little difference in the lateral displacement of the block-type quay wall regardless of the presence or absence of cap concrete. Under the condition where the piles were embedded down to the rubble mound layer, the piles exhibited the rotational behavior seen in the short piles. As the embedment depth of the piles increased, the piles showed the same bending behavior as the intermediate piles. Thus, the piles significantly contribute to the control of lateral displacement in the block-type quay wall with piles.

A Study of Lateral Resistance of Block Breakwater Combined with Piles (수치해석을 이용한 말뚝이 결합된 블록식방파제의 수평저항력에 관한 연구)

  • Lee, Won-Hyo;Kwon, Soon-Goo;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.100-108
    • /
    • 2022
  • Three-dimensional FEM numerical analysis was performed to understand the behaviors of blocks and piles according to the horizontal load for the block breakwater combined with piles. The Modified Mohr-Coulomb model, the improved version of the Mohr-Coulomb model, was applied for the ground modeling. The cases when the pile is embedded only into the block, embedded to the riprap layer (H = 4.29 cm), and embedded to the ground down to 2H, 3H, and 4H were examined. The results of the laboratory model experiment and the numerical analysis showed similar horizontal resistance force-displacement behaviors. The pile showed rotational behavior up to the embedment depth of 1H~2H and bending behavior in the case of 3H~4H depth embedment. When the embedment depth of the pile is 3H or more, the pile shows a bending behavior, so it can be considered that the pile contributes significantly to the horizontal resistance of the block breakwater. The results of this study will be used for various numerical analyses for real-size structure design.

A Study on Variation of Ultimate Pullout Resistance and Failure Behavior for Vertical Plate Anchors in Sands (앵커의 극한 지지력 변화와 파괴 거동에 관한 연구)

  • 장병욱;황명수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.71-80
    • /
    • 1990
  • Model tests for the ultimate pullout resistance of anchorages and investigation of failure behaviors in cohesionless soil have been conducted. The factors affecting the anchorage are mostly the geometry of the system, and soil properties of sands. The main conclusions of the experimental work were as follows. 1. The load - displacement relationship can be a form of parabolic curve for all plates. 2. The change in ultimate pullout resistance of anchor is mostly affected by embedment ratio and size of anchor, and influenced to a lesser degree by its shape. 3. Critical embedment ratio which is defined as the failure mode changes from shallow to deep mode is increased with increasing height of anchor. 4. For a constant anchor height, as the width of anchor increases the ultimate pullout resistance also increases. However, considering the efficiency of anchor for unit area, width of anchor does not appear to have any sigrnificant contribution on increasing anchor city. 5. Anchor capacity has a linear relation to sand density for any given section and the rate of change increases as the section increases. Critical depth determining the failure patterns of anchor is decreased with a decrease of sand density. 6. With increasing inclination angle, size of anchor, and decreasing embedment ratio, the ultimate pullout resistance of anchor under inclined loading is significantly decreased. 7. The ultimate pullout resistance of double anchor, a method of improving single of anchor capacity, is influenced by the center - to - center spacing adjacent anchors. It is also found that tandem and parallel anchor rigging arrangements decrease the anchor system capacity to less than twice the single anchor capacity due to anchor interference.

  • PDF

Analysis of Ultimate Capacity of Plate Anchor on Loading Rate Capacity in Clay (점토 지반에서 인발속도에 따른 판앵커의 극한 인발저항력 분석)

  • Seo, Young-Kyo;Ryu, Dong-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.15-21
    • /
    • 2013
  • Anchors are primarily designed and constructed to resist outwardly directed loads imposed on the foundation of a structure. These outwardly directed loads are transmitted to the soil at a greater depth by the anchors. Buried anchors have been used for thousands of years to stabilize structures. Various types of earth anchors are now used for the uplift resistance of transmission towers, utility poles, submerged pipelines, and tunnels. Anchors are also used for the tieback resistance of earth-retaining structures, waterfront structures, at bends in pressure pipelines, and when it is necessary to control thermal stress. In this research, we analyzed the uplift behavior of plate anchors in clay using a laboratory experiment to estimate the uplift behavior of plate anchors under various conditions. To achieve the research purpose, the uplift resistance and displacement characteristics of plate anchors caused by the embedment ratio, plate diameter, and loading rate were studied, compared, and analyzed for various cases.

Test of Headed Reinforcement in Pullout

  • Park, Dong-Uk;Hong, Sung-Gul;Lee, Chin-Yong
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.102-110
    • /
    • 2002
  • Results of an experimental study on the pullout behavior of the headed reinforcement are presented. A total of 48 pullout tests was performed to evaluate pullout strengths and load-displacement behaviors in pullout of the headed bars. The square steel heads had gross area of 4 $A_{b}$ and thickness of $d_{b}$ The test program consisted of three pullout test groups: Simple and Edge pullout tests using plain concrete slabs, comparison of pullout performances between the standard hooks and the headed reinforcement, and pullout tests of headed reinforcement using reinforced concrete columns. Test variables included concrete strengths ( $f_{c}$' = 27.1MPa, 39.1MPa), reinforcing bar diameters (D16~D29), embedment depths (6 $d_{b}$~12 $d_{b}$), edge conditions, column reinforcement, and single-vs.-multiple bar pullout. Test results revealed that the heads effectively provided the pullout resistances of the deformed bars in tension. The load-displacement behaviors were similar between the 90-degree hooks and the headed reinforcement. When a multiple number of headed bars installed with small head-to-head spacings was pulled out, reinforcement designed to run across the concrete failure surface in a direction parallel to the headed bars helped improve the pullout performances of the headed reinforcement.t.ement.t.

  • PDF

A Study on Piled Raft Constructed on Soft Ground through Numerical Analysis (수치해석을 통한 연약지반 상 시공된 Piled Raft 기초의 거동 연구)

  • Kim, Jeonghoon;Kim, Sunkon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2013
  • In this paper, numerical analyses were conducted on piled raft foundation settlement and pile bearing characteristics in soft ground. Results obviously showed longer and larger piles developed end bearing capacity values, but also showed the load of the central pile is larger than the surrounding piles in a group formation. Additionally, after pile yielding, the load carrying capacity exists as a raft. Moreover, results showed no transverse displacement according to embedment depth for the single pile case, but larger transverse displacements for deeper embedment depths.