• Title/Summary/Keyword: Embedded device

Search Result 890, Processing Time 0.036 seconds

Implementation of a Real Time Watermarking Hardware System for Copyright Protection of a Contents in Digital Broadcasting (디지털 방송에서 콘텐츠의 저작권 보호를 위한 실시간 워터마킹 하드웨어 시스템 구현)

  • Jeong, Yong-Jae;Kim, Jong-Nam;Moon, Kwang-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.51-59
    • /
    • 2009
  • A watermarking for copyright protection of digital contents for broadcasting have to be made for a real-time system. In this paper, we propose a real-time video watermarking system which is hardware-based watermarking system of SD/HD (standard definition/high definition) video with the STRATIX FPGA device from ALTERA. There was little visual artifact due to watermarking in subjective quality evaluation between the original video and the watermarked one in our experiment. Embedded watermark was extracted after robustness testscalled natural video attacks such as A/D (analog/digital) conversion. Our implemented watermarking hardware system can be useful in movie production and broadcasting companies that requires real-time contents protection systems.

Design of a Elliptic Curve Crypto-Processor for Hand-Held Devices (휴대 단말기용 타원곡선 암호 프로세서의 설계)

  • Lee, Wan-Bok;Kim, Jung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.728-736
    • /
    • 2007
  • The more improved the Internet and the information technology, the stronger cryptographic system is required which can satisfy the information security on the platform of personal hand-held devices or smart card system. This paper introduces a case study of designing an elliptic curve cryptographic processor of a high performance that can be suitably used in a wireless communicating device or in an embedded system. To design an efficient cryptographic system, we first analyzed the operation hierarchy of the elliptic curve cryptographic system and then implemented the system by adopting a serial cell multiplier and modified Euclid divider. Simulation result shows that the system was correctly designed and it can compute thousands of operations per a secdond.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

A Study on the Microcontroller Input Port Reduction of IoT Equipments with Mixed Digital and Analog Inputs (디지털과 아날로그 입력이 혼용된 IoT 기기의 마이크로컨트롤러 입력포트 절감에 관한 연구)

  • Lee, Hyun-Chang
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.38-43
    • /
    • 2019
  • In this paper, a method of inputting one analog input and two digital switch inputs by using one analog port of microcontroller embedded in IoT device was proposed. In this method, the upper limit and the lower limit of the input voltage range of the analog input port are determined, and the analog input voltage is input to this interval. The digital switches are configured to exceed the boundaries of the upper and lower limits, respectively. To verify the performance of the proposed method, an experimental circuit was constructed and tested using a microcontroller. As a result, all three inputs can be sensed using a single analog port, thus confirming that the three required input ports are reduced to one input port, ie, 33%.

A Method of Lane Marker Detection Robust to Environmental Variation Using Lane Tracking (차선 추적을 이용한 환경변화에 강인한 차선 검출 방법)

  • Lee, Jihye;Yi, Kang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1396-1406
    • /
    • 2018
  • Lane detection is a key function in developing autonomous vehicle technology. In this paper, we propose a lane marker detection algorithm robust to environmental variation targeting low cost embedded computing devices. The proposed algorithm consists of two phases: initialization phase which is slow but has relatively higher accuracy; and the tracking phase which is fast and has the reliable performance in a limited condition. The initialization phase detects lane markers using a set of filters utilizing the various features of lane markers. The tracking phase uses Kalman filter to accelerate the lane marker detection processing. In a tracking phase, we measure the reliability of the detection results and switch it to initialization phase if the confidence level becomes below a threshold. By combining the initialization and tracking phases we achieved high accuracy and acceptable computing speed even under a low cost computing resources in which we cannot use the computing intensive algorithm such as deep learning approach. Experimental results show that the detection accuracy is about 95% on average and the processing speed is about 20 frames per second with Raspberry Pi 3 which is low cost device.

A Study on the Creation of Augmented Reality Map (증강현실 지도제작에 대한연구)

  • Kim, Tae-Eun
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.335-341
    • /
    • 2018
  • This paper is a study on map contents to be embedded in a new type of mobile device that combines 2D information and 3D information by combining 2D information with augmented reality technology. We also describe the planning and production of a 3D map application called 'NSU AR Map' using Unity3D engine to help understand this paper. 'NSU AR Map' is a map application that enables accurate identification of user's location and real-world view through 360 View. Based on the experience gained during the process of 3D map application, this paper will present how 3D technologies and augmented reality technologies are applied to new map applications and how they can be developed in the future.

A Study of Interactive Digital Signage System using Heterogeneous Device (이기종 디바이스를 이용한 인터렉티브 디지털 사이니지 시스템 연구)

  • Park, Dae Seung;Sung, Yeol Woo;Kim, Cheong Ghil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.184-188
    • /
    • 2021
  • In general, digital signage is a next-generation smart media that provides various information and advertisement services to many people indoors or outdoors using the Internet. Recently, digital signage is rapidly spreading in such a small indoor environment, that is, in an area closely related to daily life, for example, inside an elevator. However, in this kind of indoor environment where the stay time of persons is extremely limited, it would be not easy for them to keep advertisements in the user memory for a long time. In the digital signage display installed in an indoor environment, it is possible to think about the possibility for a function such as expanding the screen to a user's smartphone, which is now widely spread, to contain, store, and use the transmitted content. In this paper, we propose a method to extend the display of digital signage contents to personal smart phones with interaction function in such a limited environment. In order to make the system operation, the proposed system was verified by confirming the result of dual screen implementation in a smart phone through the prototype implementation of a digital signage system in an embedded Linux environment.

Smart Farm Control System for the Creation of Mushroom-Cultivated Aseptic Environment (버섯재배 무균 생육환경 조성을 위한 스마트팜 통합제어 시스템)

  • Ju, Yeong-Tae;Kim, Sun-Hee;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.559-564
    • /
    • 2021
  • With the development of ICT, research on smart farms is steadily progressing in the agricultural field for the modernization of cultivation facilities. However, most of the current smart farms are not specific crops, but general-purpose systems that can be used in various fields. In this paper, an environmental control device and an integrated control system capable of creating a aseptic growing environment required for mushroom cultivation were proposed, and the system was designed, manufactured, and programmed. Through this, it is possible to build a smart farm optimized for crops that is needed to maintain a precise growing environment.

Software Library Design for GNSS/INS Integrated Navigation Based on Multi-Sensor Information of Android Smartphone

  • Kim, Youngki;Fang, Tae Hyun;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.279-286
    • /
    • 2022
  • In this paper, we designed a software library that produces integrated Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) navigation information using the raw measurements provided by the GNSS chipset, gyroscope, accelerometer and magnetometer embedded in android smartphone. Loosely coupled integration method was used to derive information of GNSS /INS integrated navigation. An application built in the designed library was developed and installed on the android smartphone. And we conducted field experiments. GNSS navigation messages were collected in the Radio Technical Commission for Maritime Service (RTCM 3.0) format by the Network Transport of RTCM via Internet Protocol (NTRIP). As a result of experiments, it was confirmed that design requirements were satisfied by deriving navigation such as three-dimensional position and speed, course over ground (COG), speed over ground (SOG), heading and protection level (PL) using the designed library. In addition, the results of this experiment are expected to be applicable to maritime navigation applications using smart device.

A Novel Spiking Neural Network for ECG signal Classification

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.20-24
    • /
    • 2021
  • The electrocardiogram (ECG) is one of the most extensively employed signals used to diagnose and predict cardiovascular diseases (CVDs). In recent years, several deep learning (DL) models have been proposed to improve detection accuracy. Among these, deep neural networks (DNNs) are the most popular, wherein the features are extracted automatically. Despite the increment in classification accuracy, DL models require exorbitant computational resources and power. This causes the mapping of DNNs to be slow; in addition, the mapping is challenging for a wearable device. Embedded systems have constrained power and memory resources. Therefore full-precision DNNs are not easily deployable on devices. To make the neural network faster and more power-efficient, spiking neural networks (SNNs) have been introduced for fewer operations and less complex hardware resources. However, the conventional SNN has low accuracy and high computational cost. Therefore, this paper proposes a new binarized SNN which modifies the synaptic weights of SNN constraining it to be binary (+1 and -1). In the simulation results, this paper compares the DL models and SNNs and evaluates which model is optimal for ECG classification. Although there is a slight compromise in accuracy, the latter proves to be energy-efficient.