• Title/Summary/Keyword: Embedded Concrete

Search Result 669, Processing Time 0.022 seconds

Prediction of bond strength between concrete and rebar under corrosion using ANN

  • Shirkhani, Amir;Davarnia, Daniel;Azar, Bahman Farahmand
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.273-279
    • /
    • 2019
  • Corrosion of the rebar embedded in concrete has a fundamental role in the determination of life and durability of the concrete structures. Researches have demonstrated that artificial neural networks (ANNs) can effectively predict issues such as expected damage in concrete structures in marine environment caused by chloride penetration, the potential of steel embedded in concrete under the influence of chloride, the corrosion of the steel embedded in concrete and corrosion current density in steel reinforced concrete. In this study, data from different kind of concrete under the influence of chloride ion, are analyzed using the neural network and it is concluded that this method is able to predict the bond strength between the concrete and the steel reinforcement in mentioned condition with high reliability.

An Analytical Study on the Bond-Properties of Axial Bars Embedded in Massive Concrete (매시브콘크리트에 배근된 주철근의 부착특성에 관한 해석적 연구)

  • 장일영;이호범;이승훈;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.143-147
    • /
    • 1992
  • Description of the behavior of the R.C structural members fixed on massive concrete is not normally generalization of recognized configuration for regular R.C. design guidanes. This can be due to the complexity of evaluation of internal resistancy and deflection changes of the members subjected to the various external forces. On the base of axially loaded member fixed on footing, however, the estimation of deflection changes due to flexural force shear force and rotational force is to be carried out in ways of specifying the bond characteristics of axial bars embedded in massive concrete. This work is to quantify adhesion of steel-concrete, initial concrete cracking stress near bar rib, maximum bond stress and residual stress in concrete respectively. In addition to quantification of them for particulate behavior, the suggestions of multi-linear bond stress-slip diagram made in carrying out finite element analyses for adhesion failure, examining concrete cracking status and reviewing existing experimental data lead to alternatively constructed relationship between bond stress and slip for a axial bars embedded massive concrete.

  • PDF

Ultrasonics and electromagnetics for a wireless corrosion sensing system embedded in structural concrete

  • Hietpas, K.;Ervin, B.;Banasiak, J.;Pointer, D.;Kuchma, D.A.;Reis, H.;Bernhard, J.T.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.267-282
    • /
    • 2005
  • This work describes ongoing development of an embedded sensor system for the early detection and prevention of deterioration of reinforcing steel tendons within reinforced concrete. These devices will evaluate the condition of the steel tendon using ultrasonic techniques and then wirelessly transmit this data to the outside world without human intervention. The ultrasonic transducers and the interpretation of the sensed signals that allow detection and prognosis of tendon condition are detailed. Electrical characterization of concrete mixtures used in bridge construction is conducted and a wideband microstrip antenna is designed and fabricated to operate between 2.4 and 2.5 GHz when embedded in such a medium. Simulations and measurements of the embedded antenna element are presented. Transceiver selection and implementation are discussed as well as future work in operational protocols, sensor networking, and power sources. By implementing commercially available off-the-shelf components whenever possible, these devices have the potential to save millions of dollars a year in evaluation, repair and replacement of reinforced concrete.

Shear anchor behavior and design of an embedded concrete rack rail track for mountain trains

  • Hyeoung-Deok Lee;Jong-Keol Song;Tae Sup Yun;Seungjun Kim;Jiho Moon
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.373-384
    • /
    • 2024
  • In this study, a novel mountain train system was developed that can run along a steep gradient of 180 ‰ and sharp curve with a minimum radius of 10 m. For this novel mountain train, an embedded precast concrete rack rail track was implemented to share the track with an automobile road and increase constructability in mountainous regions. The embedded rack rail track is connected to a hydraulically stabilized base (HSB) layer with shear anchors, which must have sufficient longitudinal resistance because they bear most of the traction forces originated from the rack rail and longitudinal loads owing to the steep gradient. In addition, the damage to the shear anchor parts, including the surrounding concrete, must be strictly limited under the service load because the maintenance of shear anchors inside the track is extremely difficult after installation. In this study, the focus was made on the shear anchor behavior and design an embedded rack rail track, considering the serviceability and ultimate limit states. Accordingly, the design loads for mountain trains were established, and the serviceability criteria of the anchor were proposed. Subsequently, the resistance and damage of the shear anchors were evaluated and analyzed based on the results of several finite element analyses. Finally, the design method of the shear anchors for the embedded rack rail track was established and verified.

Heat Transfer Modeling of Fiber-embedded Fire-Resistant High Strength Concrete (섬유혼입 내화 고강도 콘크리트의 열전달 모델)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • High strength concrete used for large structures is vulnerable to fire due to explosive spalling when it is heated. Recently, various research is conducted to enhance the fire-resistance of the high strength concrete by reducing the explosive spalling at the elevated temperature. In this study, a heat transfer analysis model is proposed for a fiber-embedded fire-resistant high strength concrete. The material model of the fire-resistant high strength concrete is selected from the calibrated material model of a high strength concrete incorporating thermal properties of fibers and physical behavior of internal concrete at the elevated temperature. By comparing the simulated results using the calibrated model with the experimental results, the heat transfer model of the fiber-embedded fire-resistant high strength concrete is proposed.

A Consideration of Volume and Installation Method of Concrete-Embedded Foundation Earthed an Electrode (콘크리트에 매입된 기초접지극의 크기 및 설치방법에 관한 고찰)

  • Lee, Ju-Cheol;Lee, Young-Chul;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.82-88
    • /
    • 2013
  • IEC standards do not require to limit the earthing resistance of the concrete-embedded foundation earthing electrode which is installed to a specific value. However, in Korea the value of $5{\Omega}$ and below applies to the earthing resistance for a domestic customer whose receiving voltage is 22.9kV. This paper calculates the minimum area and volume of the concrete-embedded foundation earthing electrode in order to obtain a specific value of the earthing resistance when the electrode of the building's lightning protection system and that of its power system are interconnected. It also suggested the most appropriate method of installing the foundation earthing electrode, taking the electric characteristics of concrete into account.

Begavuir if Embedded intrinsic Fabry-Perot Optical Fiber Sensors in the Cement Concrete Structure (콘크리트에 매설된 구조물 유지관리용 Fabry-Perot 광섬유 센서의 거동)

  • Kim, Ki-Soo;Yoo, Jae-Wook;Lee, Seung-jae;Choi, Long;Lee, Woong-Jong;Kim, Jong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.295-299
    • /
    • 1996
  • Intrinsic Fabry-Perot Optical fiber sensors were embedded to tensile side of the 20cm$\times$20cm$\times$150cm cement concrete structures. The sensors were attached to the reinforcing steels and then, the cement concretes were applied. It took 30 days for curing the specimens. After that, the specimens were tested with 4-point bending method by universal testing machine. Strains were measured and recorded by the strain gauges embedded near optical fiber sensors. Output data of fiber sensor showed good linearity to the strain data from the strain gauges up 2000microstrain. The optical fiber sensors showed good response after yielding of structure while embedded metal film strain gauges did not show any response. We also specimens were broken down. In conclusion, the optical fiber sensors can be used as elements of health monitoring systems for cement concrete infra-structures.

  • PDF

An Experimental Study on the Monitoring of Corrosion of Rebar Embedded in Reinforced Concrete (철근콘크리트에 매립된 철근의 부식 모니터링에 관한 실험적 연구)

  • Park, Jang-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.262-263
    • /
    • 2019
  • In this study, a sensor for detecting corrosion of rebar embedded in reinforced concrete structures was fabricated and its performance was verified. In order to monitor the open circuit potential(OCP) of the rebar embedded in reinforced concrete, a concrete embedded solid electrode was constructed as a sensor using MnO2. The OCP of the rebar could be observed using a sensor and a data logger. The decrease of the OCP to -510mV (vs.MnO2) or less was judged to be corrosion of the rebar. Since it is a solid-mediated sensor, it is more stable and durable than an electrode using an aqueous solution, and it is considered that the corrosion state of the rebar can be monitored for a long period of time.

  • PDF

The influence of EAF dust on resistivity of concrete and corrosion of steel bars embedded in concrete

  • Almutlaq, Fahad M.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.163-176
    • /
    • 2014
  • Essentially, when electrical current flows easily in concrete that has large pores filled with highly connective pore water, this is an indication of a low resistivity concrete. In concrete, the flow of current between anodic and cathodic sites on a steel reinforcing bar surface is regulated by the concrete electrical resistance. Therefore, deterioration of any existing reinforced concrete structure due to corrosion of reinforcement steel bar is governed, to some extent, by resistivity of concrete. Resistivity of concrete can be improved by using SCMs and thus increases the concrete electrical resistance and the ability of concrete to resist chloride ingress and/or oxygen penetration resulting in prolonging the onset of corrosion. After depassivation it may slow down the corrosion rate of the steel bar. This indicates the need for further study of the effect of electric arc furnace dust (EAFD) addition on the concrete resistivity. In this study, concrete specimens rather than mortars were cast with different additions of EAFD to verify the electrochemical results obtained and to try to understand the role of EAFD addition in influencing the corrosion behaviour of reinforcing steel bar embedded in concrete and its relation to the resistivity of concrete. The results of these investigations indicated that the corrosion resistance of steel bars embedded in concrete containing EAFD was improved, which may link to the high resistivity found in EAFD-concrete. In this paper, potential measurements, corrosion rates, gravimetric corrosion weight results and resistivity measurements will be presented and their relationships will also be discussed in details.

Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC

  • Hu, Yuqing;Zhao, Guotang;He, Zhiqi;Qi, Jianan;Wang, Jingquan
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.103-118
    • /
    • 2020
  • The static behavior of grouped large-headed studs (d = 30 mm) embedded in ultra-high performance concrete (UHPC) was investigated by conducting push-out tests and numerical analysis. In the push-out test, no splitting cracks were found in the UHPC slab, and the shank failure control the shear capacity, indicating the large-headed stud matches well with the mechanical properties of UHPC. Besides, it is found that the shear resistance of the stud embedded in UHPC is 11.4% higher than that embedded in normal strength concrete, indicating that the shear resistance was improved. Regarding the numerical analysis, the parametric study was conducted to investigate the influence of the concrete strength, aspect ratio of stud, stud diameter, and the spacing of stud in the direction of shear force on the shear performance of the large-headed stud. It is found that the stud diameter and stud spacing have an obvious influence on the shear resistance. Based on the test and numerical analysis results, a formula was established to predict the load-slip relationship. The comparison indicates that the predicted results agree well with the test results. To accurately predict the shear resistance of the stud embedded in UHPC, a design equation for shear strength is proposed. The ratio of the calculation results to the test results is 0.99.