• 제목/요약/키워드: Embedded Concrete

검색결과 675건 처리시간 0.024초

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Web-shear strength of steel-concrete composite beams with prestressed wide flange and hollowed steel webs: Experimental and practical approach

  • Han, Sun-Jin;Kim, Jae Hyun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.311-321
    • /
    • 2022
  • In the buildings with long spans and high floors, such as logistics warehouses and semiconductor factories, it is difficult to install supporting posts under beams during construction. Therefore, the size of structural members becomes larger inevitably, resulting in a significant increase in construction costs. Accordingly, a prestressed hybrid wide flange (PHWF) beam with hollowed steel webs was developed, which can reduce construction costs by making multiple openings in the web of the steel member embedded in concrete. However, since multiple openings exist and prestress is introduced only into the bottom flange concrete, it is necessary to identify the shear resistance mechanism of the PHWF beam. This study presents experimental shear tests of PHWF beams with hollowed steel webs. Four PHWF beams with cast-in-place (CIP) concrete were fabricated, with key variables being the width and spacing of the steel webs embedded in the concrete and the presence of shear reinforcing bars, and web-shear tests were conducted. The shear behavior of the PHWF beam, including crack patterns, strain behavior of steel webs, and composite action between the prestressed bottom flange and CIP concrete, were measured and analyzed comprehensively. The test results showed that the steel web resists external shear forces through shear deformation when its width is sufficiently large, but as its width decreased, it exerted its shear contribution through normal deformation in a manner similar to that of shear reinforcing bars. In addition, it was found that stirrups placed on the cross section where the steel web does not exist contribute to improving the shear strength and deformation capacity of the member. Based on the shear behavior of the specimens, a straightforward calculation method was proposed to estimate the web-shear strength of PHWF beams with CIP concrete, and it provided a good estimation of the shear strength of PHWF beams, more accurate than the existing code equations.

Seismic Performance of Column-Footing Connection of Modular Pier using CFT (CFT를 이용한 모듈러 교각 기둥-기초 연결부의 내진성능)

  • Kim, Ji Young;Kim, Ki Doo;Ma, Hyang Wook;Chung, Chul-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제34권1호
    • /
    • pp.73-85
    • /
    • 2014
  • The CFT (Concrete Filled steel Tubes) column-footing connection is cast-in-place embedded type which provides simple construction procedure, low cost, and superior structural performance. In this study, CFT column-footing connection of modular pier is proposed and structural performance is evaluated by experimental tests. To evaluate structural performance of the CFT column-footing connection, a series of experimental tests were performed for the 4 specimens with different embedded depth. As a result of the quasi-static test, the specimen with 0.6D (0.6 times the outside diameter of steel tube) embedded depth showed relatively low ductility than other specimens with larger embedded depth due to cone failure of base concrete occurred during the lower loading step. On the contrary, cone failure of the base concrete was not observed in the specimens with larger embedded depth than 0.9D, but typical flexural failure in lower part of CFT column was observed. With the analyses of force-displacement curve, displacement ductility, and energy dissipation capacity, it is concluded that the rational range of embedded depth of the CFT column-footing connection is from 0.9D to 1.2D in view of good seismic performance.

Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.477-485
    • /
    • 2018
  • This study aims to investigate the influence of individual and hybrid fiber on the local bond-slip behavior of medium and high strength concrete after exposure to different high temperatures. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths in the pullout specimens were three times the bar diameter. The parameters investigated include concrete type (control group: ordinary concrete; experimental group: fiber concrete), concrete strength, fiber type and targeted temperature. The test results showed that the ultimate bond stress in the local bond stress versus slip curve of the high strength fiber reinforced concrete was higher than that of the medium strength fiber reinforced concrete. In addition, the use of hybrid combinations of steel fiber and polypropylene fiber can enhance the residual bond strength ratio of high strength concrete.

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

Push-out test on the one end welded corrugated-strip connectors in steel-concrete-steel sandwich structure

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.23-35
    • /
    • 2017
  • Current form of Corrugated-strip connectors are not popular due to the fact that the two ends of this form need to be welded to steel face plates. To overcome this difficulty, a new system is proposed in this work. In this system, bi-directional corrugated-strip connectors are used in pairs, and only one of their ends is welded to the steel face plates on each side. The other end is embedded in the concrete core. To assemble the system, common welding devices are required, and welding process can be performed in the construction sites. By performing the Push-out test under static loading, the authors experimentally assess the effects of geometric parameters on ductility, failure modes and the ultimate shear strength of the aforesaid connectors. For this purpose, sixteen experimental samples are prepared and investigated. For fifteen of these samples, one end of the shear connectors is welded to steel face plates, and the other end is embedded in the concrete. Another experimental sample is prepared in which both ends are welded to the steel face plates. According to the achieved results, several relations are proposed for predicting the ultimate shear strength and load vs. interlayer slip (load-slip) behavior of corrugated-strip connectors. Moreover, these formulas are compared with those of the well-known codes and standards. Accordingly, it is concluded that the authors' relations are more reliable.

Crack Detection in Mortar Beams using Optical Time Domain Reflectometry (광학적 시간영역 반사시스템을 이용한 모르타르 보의 균열 탐사)

  • Rhim, Hong-Chul;Lee, Kyoung-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제4권3호
    • /
    • pp.185-195
    • /
    • 2000
  • Detection of cracks in concrete beams using optical fiber sensors is useful for monitoring of concrete structures. In this study, optical time domain reflectometry (OTDR) is used to detect cracks. Resolution of OTDR is the main contributor to detect cracks in concrete structures. The OTDR used in this study can detect cracks with high precision of 0.5 m. Two mortar beams, reinforced with a 19 mm diameter steel bar, are made with the dimensions of 140 mm (width) ${\times}$ 200 mm (depth) ${\times}$ 2.000 mm (length). Two fibers are embedded inside each beam and two fibers are attached under the beams. The application of measurement system which consists of fiber and FC/PC connecter is studied. For this, theory of optics, resolution, crack moment, and size of specimens are investigated. From the measured data, it is verified that fibers which are attached under the beam can detect the crack in beams effectively. However, fibers embedded inside the beam are unable to detect cracks in beams using the OTDR in this study.

  • PDF

Evaluation of RFID System for Location Based Services in the Building (건물 내의 위치기반 서비스를 위한 RFID 시스템)

  • Nam, Sang-Yep;An, Jin-Ung;Kim, Dong-Han
    • 전자공학회논문지 IE
    • /
    • 제48권1호
    • /
    • pp.45-50
    • /
    • 2011
  • In this paper, different RFID tag types compliant with UHF frequency based RFID system were chosen to build RFID tag embedded concrete blocks. Then, by placing the tags in systematically varied depths of a concrete block, we could measure the RF signal attenuation pattern as the performance indicator of a specific concrete embedded RFID system. Experiments show that the concrete mixing ratio makes no significant difference in tag detection performance level. The significance of the developed RFID system lies in its capability of eliminating GPS's error and shadow area as well as providing smart infrastructure for supporting truly pervasive ubiquitous computing applications especially in outdoor environment.