• Title/Summary/Keyword: Embankment height

Search Result 120, Processing Time 0.024 seconds

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

River Embankment Integrity Evaluation using Numerical Analysis (수치해석을 이용한 하천제방의 건전도 평가)

  • Byun, Yo-Seph;Jung, Hyuk-Sang;Kim, Jin-Man;Choi, Bong-Hyuck;Kim, Kyung-Min;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.524-528
    • /
    • 2009
  • An influence factors for soundness evaluation of river levee include resistibility and embankment for piping of ground consisting embankment in case piping, permeability coefficient of ground, height of embankment, the width of crest, material characteristics of embankment and foundation ground, shape of embankment slope, an influence for penetration of rainfall or river water in case slope stability. In this study, it was operated a feasibility investigation of existing design result, stability evaluation for permeability coefficient use and permeability coefficient change of foundation ground to investigate an influence in line with permeability coefficient change for result of river levee penetration analysis. The evaluation results of influence factors, the permeability coefficient used in design and it was evaluated influence in safety factor of piping. After the evaluation of influence factors, the permeability coefficient used in the design appears with the fact that differs in a design report about same soil, Accordingly, the stability investigation of embankment by application of literature data can affect stability evaluation results by change factors like a permeability coefficient, void ratio. It should be certainly used material properties by a test in soundness evaluation of river levee.

  • PDF

The Seepage Behaviour and Stability of Extension Embankment by Unsteady State Seepage (비정상침투에 의한 증축제체의 침투거동과 안정성)

  • Shin, Bang-Woong;Bae, Woo-Seok;Lee, Jong-Kyu;Kang, Jong-Beom
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • In this study, the seepage behavior and the stability of the extension embankment were estimated for three cases the permeability coefficient of an extension part and the rising velocity due to the rainfall of flood period. In parallel flow condition, the unstability of the slope due to embankment erosion was examined by analyzing the variation of seepage line by the seepage modeling tests and FEM analysis, and the stability of the embankment slope accompanied by the sudden rise of the water level after the flood. The seepage behavior of extension embankment indicates that the larger permeability of the extension part the longer initial seepage distance, and the exit point from embankment slope is gradually increased, and then shows unstable seepage behavior that occurs a partial collapse as safety factor decreases with time. It is because of the increment of exit points due to variation of seepage line and rising velocities of water level. Also, the collapse aspect of embankment slope shows that the increment rising velocities of water level causes the increment collapse height and depth.

  • PDF

A Study of Artesian Characteristics in Yangsan/Mulgeum Site (양산물금지구 피압수 특성에 관한 연구)

  • 한영철;유갑용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.123-130
    • /
    • 1999
  • This paper presents a study of geotechnical treatment for artesian pressure after extensive investigation was performed on the distribution and characteristics of artesian condition which exists at Yangsan/Mulgeurn site. The result of analysis indicates that the artesian pressure seems to be up to 2.9M above the existing ground surface, originating from the higher ground water recharging sources in the surrounding hills and mountains. There is no harmful effect after the site development since the height of embankment is more than 4M above the existing ground surface.

  • PDF

Theoretical Analysis of Embankment Loads Acting on Piles (성토지지말뚝에 작용하는 연직하중의 이론해석)

  • 홍원표;이재호;전성권
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.131-143
    • /
    • 2000
  • Several theoretical analyses are performed to predict the vertical load on embankment piles with cap beams. The piles are installed in a row in soft ground below the embankment and the cap beams are placed perpendicular to the longitudinal axis of the embankment. Two failure mechanisms such as the soil arching failure and the punching shear failure are investigated according to the failure pattern in embankment on soft ground supported by piles with cap beams. The soil arching can be developed when the space between cap beams is narrow and/or the embankment is high enough. In the investigation of the soil arching failure, the stability in the crown of the arch is compared with that above the cap beams. The factors affecting the load transfer in the embankment fill by soil arching are the space between cap beams, the width of cap beams and the soil parameters of the embankment fill. The portion of the embankment load carried by cap beams decreases with increment of the space between cap beams, while it increases with the embankment height, the width of cap beams, the internal friction angle and cohesion of the embankment fill. Thus, the factors affecting load transfer in embankment should be appropriately decided in order to maximize the effect of embankment load transfer by piles.

  • PDF

Estimation of Replacement Depth for the Sea-dike Construction (방조재 시공을 위한 강제치환심도의 추정)

  • Chang, Pyoung-Wuck;Woo, Chull-Woong;Kim, Seong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • The research has been done to obtain a empirical equation for the depth of replacement by the analysis of data collected from 8 sea-dike construction sites of south coast of Korean peninsula. The correlation analysis results show that the depth of replacement was mainly dependent upon the height of embankment and the undrained shear strength of soft soil. The suggested regression equation was quite well predicted the depth of replacement and recommended to use under certain restrictions where the embankment height was less than 10m and under 0.2 kgf/cm^{2} of the undrained shear strength of soil.

A Study on the Seepage Behavior of Embankment with Weak Zone using Numerical Analysis and Model Test (취약대를 가진 모형제방의 침투거동에 관한 연구)

  • Park, Mincheol;Im, Eunsang;Lee, Seokyoung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.5-13
    • /
    • 2016
  • This research is focused on the seepage behavior of embankment which had the weak zone with big permeability. The distributed TDR (Time Domain Reflectometer) and point sensors such as settlement gauge, pore water pressuremeter, vertical total stressmeter, and FDR (Frequency Domain Reflectometer) sensor were used to measure the seepage characteristics and embankment behavior. Also, the measured data were compared to the data of 2-D and 3-D numerical analysis. The dimension of model embankment was 7 m length, 5 m width and 1.5 m height, which is composed of fine-grained sands and the water level of embankment was 1.3 m height. The seepage behavior of measuring and numerical analysis were very similar, it means that the proper sensing system can monitor the real-time safety of embankment. The result by 2-D and 3-D numerical analysis showed similar saturation processing, however in case of weak zone, the phreatic lines of 2-D showed faster movement than that of 3-D analysis, and finally they converged.

Evaluating Water Supply Capacity of Embankment Raised Reservoir on Climate Change (기후변화에 따른 둑높임 저수지의 용수공급능력 평가)

  • Lee, Jaenam;Noh, Jaekyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • An embankment raising project on 113 agricultural reservoirs in Korea was implemented in 2009 to increase water supply capacity for agricultural water and instream uses. This study evaluated the future water supply capacity of the Imgo reservoir at which the agricultural reservoir embankment raising project was completed, considering climate change scenarios. The height of the embankment of the reservoir was increased by 4.5 m, thereby increasing its total storage from 1,657.0 thousand to 3,179.5 thousand cubic meters. To simulate the reservoir water storage with respect to climate changes, two climate change scenarios, namely, RCP 4.5 and RCP 8.5 (in which greenhouse gas reduction policy was executed and not executed, respectively) were applied with bias correction for reflecting the climate characteristics of the target basin. The analysis result of the agricultural water supply capacity in the future, after the agricultural reservoir embankment raising project is implemented, revealed that the water supply reliability and the agricultural water supply increased, regardless of the climate change scenarios. By simulating the reservoir water storage considering the instream flow post completion of the embankment raising project, it was found that water shortage in the reservoir in the future is not likely to occur when it is supplied with an appropriate instream flow. The range of instream flow tends to decrease over time under RCP 8.5, in which the greenhouse gas reduction policy was not executed, and the restoration of reservoir storage was lower in this scenario than in RCP 4.5, in which greenhouse gas reduction policy was executed.

Behavior of the Embankment on Normally Consolidated Clay Supported by the Piled Raft (Piled Raft 기초로 지지된 연약지반 상의 제방의 거동)

  • Kim, Sang-Kyu;Song, Sun-Ok;Han, Sung-Gil;Jeon, Jin-Kyu;Lee, Wan-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.33-41
    • /
    • 2011
  • A railway embankment route extending to 2 km was laid on normally consolidated clay in the West Gimhae Plain. This embankment was first built using the stage-construction technique, but longitudinal cracks suggesting arc sliding appeared on the surface of the embankment immediately after the first stage of its construction. As an alternative, the piled raft was installed on the failed embankment and then the remaining height of the embankment was raised. The behavior of the piled raft was monitored with different instruments during construction. This paper describes the monitoring results and analyses. The results show that if the pile group essentially exhibits the behavior of friction piles, the piled raft foundation performs well even in normally consolidated soft clay.

Seepage Characteristics of Agricultural Reservoir Embankment Considering Filter Interval (필터간격을 고려한 농업용저수지 제체의 침투특성)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • This study analyzed pore water pressure, seepage and leakage quantity, height of seepage and critical hydraulic gradient in order to suggest the seepage characteristics of agricultural reservoir embankment considering filter interval. The seepage characteristics of a deteriorated reservoir embankments were conducted according to the horizontal filter intervals range using three- dimensional finite element analysis. The wider the horizontal filter interval, the higher the pore water pressure increased, and the pore water pressure ratio in the center of the core has a greater effect than the base part. The seepage and leakage quantity appeared largely in the two-dimensional analysis conditions (case 1), where the filter was constructed totally in the longitudinal direction of the embankment, the wider the horizontal filter interval was gradually reduced. The reasonable filter intervals to yield efficient seepage characteristics were within 30 m for the pore water pressure of the core and the height of the seepage line. The stability of the filter installation was able to evaluate the stability of the piping by the critical hydraulic gradient method. The deteriorated reservoir with no filters or decreased functionality can significantly reduce the possibility of piping by simply installing a filter on the downstream slope. In the future, the deteriorated reservoir embankment should be checked for the reservoir remodeling because the core and filter functions have been lost or decreased significantly. In the case of a new installation, the seepage characteristic behavior due to the core and filter changes should be applied to the field after obtaining a reasonable horizontal filter interval that satisfies the safety factor by a three-dimensional analysis.